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Abstract

The Heston model is one of the most popular stochastic volatility models for Equity
and FX modelling. Although it was developed more than fifteen years ago, its un-
derstanding is still not complete and many recent publications have addressed deep
theoretical and implementation issues. We review here some recent results on this
model up to and including year 2010.



Introduction

The Heston model is one of the most popular stochastic volatility models for Equity
and FX derivatives pricing. Even if the pricing of European vanilla options within this
model has been settled for more than fifteen years from the theoretical viewpoint, a
bunch of recent papers address the issue of computing effectively the Heston Call/Put
semi-analytical formula. Another front where the pace of innovation has been acceler-
ating very recently is the design of simulation algorithms for stochastic volatility mod-
els, the classical Euler approximation scheme being notoriously deficient in general for
such models. In fact even the mathematical understanding of the Heston model is not
complete: recent works suggest that the 2 regimes κ − ρσ > 0 and κ − ρσ ≤ 0 be-
have very differently (the parameters are defined in (1)). Only the first regime, which
covers the usual case of negative stock/volatility correlation, seems to be completely
understood so far.

The first issue raised a couple of years ago was about the pricing of European vanilla
options. Although the semi-closed formula has been known since the beginning (see [37]
in 1993), it is not straightforward to implement because of the potential oscillatory be-
haviour of the complex integrand which comes into play through the Fourier-type in-
version formula. Fast Fourier Transform methods often work well for a given range
of the model parameters, but show poor robustness properties when the model pa-
rameters move—which is almost systematically the case in a calibration procedure, for
instance. The rigorous and efficient computation requires a thorough study of the in-
tegrals involved as well as a proper handling of complex numbers and branch cuts.
Several solutions have been proposed in the literature, which suggest a robust imple-
mentation.

Similarly, standard and traditional Euler schemes for Monte Carlo simulations were
proved to be insufficient: the price to be computed is very sensitive to the effective
value of the volatility which is too coarsely approximated by the Euler scheme. More
advanced techniques, adapted to Heston-like models (square-root processes) have re-
cently been developed to handle this issue properly and efficiently.

From a more theoretical point of view, some properties have recently been proved,
making both the understanding and the use of the Heston model much easier, even
if some issues remain. In particular, the question of the true martingality of an asset
following Heston dynamics was not clear until recently: indeed, in case of positive
stock-volatility correlation, the stock price can grow way too fast, and many popular
stochastic models are not true martingales but only local martingales (in other words,
strict local martingales), as studied for instance by Jourdain in [44].

Furthermore, symmetries as well as particular combinations of the model parameters
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have been revealed, thus casting a new light upon the practical meaning (and influ-
ence) of these parameters.

Finally, asymptotic properties of the model have been thoroughly studied: small and
large time behaviours, wings of the implied volatility for fixed maturity. Though the-
oretical these results might seem at first sight, they are actually extremely useful in
practice to determine initial points for the calibration of the model, for instance. On
this calibration issue, least-square minimisation methods based on these asymptotical
results as a proxy have proved to be amazingly accurate.

All these very recent advances (in the last four years or so) have however left aside a
couple of issues still to be solved. One in particular has recently been revealed: the
importance of the κ− ρσ > 0 condition, which turns out to be most of the time hidden
in numerous papers. Even if on the equity market, the stock-volatility correlation is
almost always negative, on FX markets, the correlation between the exchange rate and
the instantaneous volatility is positive in one direction and negative in the other, so
that for small κ and a positive correlation the condition could fail. Very few papers
have recently tackled this issue and we will mention them, as it should be.

The order of the presentation will follow a natural approach, by first looking at the
properties of the Heston model, then by studying the pricing of vanilla options, and
finally by reviewing asymptotical results and the recent extensions of the model.

1 The Heston model and its parameters

1.1 The generic Heston model

Consider the forward price process (Ft)t≥0. Under the risk-neutral measure, the Heston
stochastic volatility model [37] takes the following form:

dFt = Ft
√
vt dWt, F0 > 0

dvt = κ (θ − vt) dt+ σ
√
vt dZt, v0 > 0

d 〈W,Z〉t = ρ dt,

(1)

whereW and Z are two standard Brownian motions, κ > 0, θ > 0 and σ > 0 are respec-
tively the mean-reversion speed, the long-term variance and the instantaneous volatil-
ity of the variance process (vt)t≥0. Note that v0 > 0 is assumed to be non random at time
0, and accounts for the short-term at-the-money implied variance observed on the mar-
ket. The parameter ρ ∈ [−1, 1] represents the correlation between the asset price and its
instantaneous volatility, and corresponds to the so-called leverage effect. The variance
process (vt)t≥0 is called a Feller diffusion (or a CIR process) and the Yamada-Watanabe
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conditions (see [46, Section 5.2.C]) ensure that a non-negative unique strong solution
exists. Since the process (Ft)t≥0 can be written as the exponential of a smooth functional
of the variance process, it also has a unique strong solution. Since the square-root func-
tion is not smooth at the origin, understanding the behaviour of the variance process at
this point is fundamental. The Feller classification of boundaries for one-dimensional
diffusions (see [47, Chapter 15, Section 6]) implies the following:

(i) if 2κθ ≥ σ2, then the origin is unattainable;

(ii) if 2κθ < σ2, then the origin is a regular, attainable and reflecting boundary; this
means that the variance process can touch 0 in finite time, but does not spend
time there;

(iii) infinity is a natural boundary, i.e. it can not be attained in finite time and the
process can not be started there.

In the rest of this paper, we shall refer to the inequality 2κθ ≥ σ2 as the Feller con-
dition. We refer the interested reader to [54] for the implications of such a boundary
classification when pricing options using finite difference schemes.

Notation 1. We will from now on denote Ft ∼ H (F0, v0, κ, θ, σ, ρ, t) the price of an asset
following the Heston dynamics (1). Since we consider a forward price, the interest rate, the
dividends and the repo rates are already included in the price Ft itself.

Since we shall be interested in the properties of both the variance process (vt)t≥0 and
the forward price process (Ft)t≥0, it is worth recalling the following. For any δ ≥ 0

and y0 ≥ 0, the unique strong solution to the stochastic differential equation dYt =

δdt + 2
√
XtdWt, with Y0 = y0 and (Wt)t≥0 being a standard Brownian motion, is called

a squared Bessel process with dimension δ. Straightforward calculations show that the
variance process (vt)t≥0 governing the Heston model can be written as

vt
(in law)

= e−κtYσ2(e−κt−1)/(4κ), for any t ≥ 0, (2)

where (Yt)t≥0 is a squared Bessel process starting at v0 with dimension 4κθ/σ2 This in
particular implies that, for any 0 ≤ s ≤ t, the conditional distribution of vt knowing vs
is a chi-squared distribution (see [33] for more details).

Notation 2. In relation to Bessel processes (2), the CIR process in (1) is usually written dvt =

(κθ − κvt) dt+ σ
√
vt dZt, and we therefore define

H (F0, v0, κ, κθ, σ, ρ, t) := H (F0, v0, κ, θ, σ, ρ, t) .
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1.2 The martingale issue: size matters.

Even if stochastic models driven by pure Brownian terms like (1) are always local mar-
tingales, a size issue could prevent them from being fully qualified martingales, as
shown by Jourdain [44]. In the case of the Heston model, this could happen when the
stochasticity of the volatility makes the underlying get larger, that is, in case of posi-
tive correlation. However, everything turns out to be fine (for the first moment only,
as we will see later): The following proposition is proven in [44] by a clever use of
the Gronwall’s lemma. It was also proved in [54] by a careful study of the Novikov
criterion:

Proposition 3. If Ft ∼ H (F0, v0, κ, θ, σ, ρ, t) then (Ft)t≥0 is a true martingale.

A clear self-contained proof of the true martingality of the Heston model for general
parameters has been provided recently by Keller-Ressel in [48] and also in [18], by
studying the characteristic transform in the framework of affine processes in relation
with solutions of generalised Riccati equations.

1.3 A useful reparameterisation

A time-scaling of the Heston SDE (1) so that the rescaled volatility has a normalised
volatility of volatility gives the following property:

H (F0, v0, κ, θ, σ, ρ, t) = H
(
F0,

v0

σ
,
κ

σ
,
θ

σ
, 1, ρ, σt

)
= H (F0, v̄0, α, ψ, 1, ρ, t̄) ,

with v̄0 := v0/σ, α := κ/σ, ψ := κθ/σ2 and t̄ := σt. In other words, the Heston
dynamics is that of a stochastic volatility model H with unit volatility of volatility
parameterised by four parameters: v̄0, α, ψ, ρ. If ψ and α are fixed, the volatility of
volatility σ can be seen as a multiplier of the calendar clock at which looking at the
model H. Many practitioners use this reparameterisation of the Heston model, which
is suggested in [18].

1.4 Heston Symmetry and the large correlation regime

1.4.1 Inversion and Share measure

In this section,we shall highlight the symmetric structure of the Heston model. Before
doing so, let us define the Share measure as the probability measure taking the ratio
FT/F0 as the new numéraire. Note that this is a well-defined transformation since
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Proposition 3 above ensures that the process (Ft)t≥0 is a true martingale. The follow-
ing lemma conveys a lot of information on the influence of the Heston parameters.
Essentially, it says that when one considers an asset (Ft)t≥0 following some Heston dy-
namics, then the process

(
F−1
t

)
t≥0

also follows a Heston dynamics up to the related
change of measure.

Lemma 4. (Heston Symmetry)
If Ft ∼ H (F0, v0, κ, θ, σ, ρ, t), then under the Share measure—i.e., where FT/F0 is the new
numéraire—we have F−1

t ∼ H
(
F−1

0 , v0, κ̃, θ̃, σ,−ρ, t
)

, where κ̃ := κ− ρσ and θ̃ := κθ/κ̃. In

rescaled parameters under the Share measure this reads F−1
t ∼ H

(
F−1

0 , v̄0, α− ρ, ψ, 1,−ρ, t̄
)
.

The proof of this mainly relies upon a simple Girsanov-change of measure argument.
In [17], the author proves the same but using the characteristic function of Heston.
Obviously this Heston symmetry is an involution on the Heston dynamics such that
κ − ρσ > 0, with a single fixed point which is the uncorrelated Heston model (ρ = 0).
By turning a Call price expectation into a Put price under the Share measure, it can
be shown that the right-wing of the Heston model is the left wing of its symmetrised
model (and vice-versa). This is useful in practice since many authors provide results
on smile asymptotics only on one side of the smile. A last consequence is that the at-
the-money volatility structure (aka the implied volatility term structure) should be left
invariant by the Heston symmetry.

1.4.2 The large correlation regime

The previous discussion clearly shows that the region of parameters κ − ρσ ≤ 0, or
yet in rescaled parameters α ≤ ρ, is singular in some sense: the symmetry can not
be applied in a straightforward manner since the corresponding volatility parameters
κ̃ and θ̃ will be negative. Even if some sense could be given to the solution of the
stochastic differential equation so obtained, the properties of the volatility process will
be quite different than in the usual case. From now on we will call the region κ−ρσ ≤ 0

(α ≤ ρ) the large correlation regime, and its complementary the good correlation regime.

1.5 Anticorrelated Heston

The case ρ = −1 in Heston (by symmetry the case ρ = 1 has analogous properties)
has some interesting features. In particular, as stated in the following proposition, the
implied volatility is a strictly decreasing function of the strike, and hence the anticor-
related Heston model will is not able to fit smiles that do not have this property.
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Proposition 5. Assume that ρ = −1 and define F ∗
T

:= F0 exp
(
v̄0 + ψT

)
for all T = σT > 0,

then the inequality FT < F ∗
T

always holds. The implied volatility is strictly decreasing for all
strikes below F ∗

T
and null whenever the strike is greater than F ∗

T
.

The proof relies on the observation of the system of SDEs (1) in the anti-correlated
case. Note that this property is obtained by Fourier transform in Gatheral’s book [30].
The anti-correlated Heston is sometimes named the Heston-Nandi model [38], by ref-
erence to a work of Heston and Nandi who studied a discrete time version of the anti-
correlated Heston.

2 Pricing and calibration

2.1 The semi-closed-form formula

Heston [37] solved the pricing problem for a European Call option Ct (Ft, vt) at time t,
with time to maturity τ = T − t, written on a forward stock price Ft, with strike K:

Ct (Ft, vt) = Fte
−rτP1 (Ft, vt)−Ke−rτP2 (Ft, vt)

with 

Pj (Ft, vt) :=
1

2
+

1

π

∫ +∞

0

<
(
fj (Ft, vt, x)

ix
e−ixk

)
dx

fj (Ft, vt, x) := exp
(
Cj (τ, x) +Dj (τ, x) v + ix log (Ft)

)

Cj (τ, x) :=
κθ

σ2

(
(bj − iρσx+ dj) τ − 2 log

(
1− γj exp (djτ)

1− γj

))

Dj (τ, x) :=
bj − iρσx+ dj

σ2

(
1− exp (djτ)

1− γj exp (djτ)

)

γj :=
bj − iρσx+ dj
bj − iρσx− dj

, dj :=

√
(bj − iρx)2 − σ2x (2iuj − x)

u1 :=
1

2
, u2 := −1

2
, k := log (K) , b1 := κ− ρσ, b2 := κ

(3)

So the problem of pricing a Call option in the Heston model eventually boils down
to efficiently computing the above complex integral. Several methods are available,
either by direct integration (Gauss-Legendre, Gauss-Lobatto) or by FFT. In rescaled
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parameters, the formula can be simplified as

Ct (Ft, vt) = Fte
−rτP 1 (Ft, v̄t)−Ke−rτP 2 (Ft, v̄t)

with 

P j (Ft, v̄t) :=
1

2
+

1

π

∫ +∞

0

<
(
f̄j (Ft, v̄t, x)

ix
e−ixk

)
dx

f̄j (Ft, v̄t, x) := exp
(
Cj (τ , x) +Dj (τ , x) v̄ + ix log (Ft)

)

Cj (τ , x) := ψ

((
b̄j − iρx+ d̄j

)
τ − 2 log

(
1− γj exp

(
d̄jτ
)

1− γj

))

Dj (τ , x) :=
(
b̄j − iρx+ d̄j

)( 1− exp
(
d̄jτ
)

1− γj exp
(
d̄jτ
))

γj := γj =
b̄j − iρx+ d̄j
b̄j − iρx− d̄j

, d̄j :=

√(
b̄j − iρx

)2 − x (2iuj − x)

u1 :=
1

2
, u2 := −1

2
, k := log (K) , b̄1 := α− ρ, b̄2 := α, τ := στ

(4)

Note that (3) and (4) hold both in the good and large correlation regimes.

2.2 Jaeckel & Kahl’s approach

Consider Equation (3), where we have Pj (Ft, vt) = 1/2 + π−1
∫ +∞

0
Ψj (x) dx, j = 1, 2.

Jaeckel and Kahl [40] proved that the functions Ψj have genuine limits both at zero
and at infinity, and suggest the use of an adaptive Gauss-Lobatto type integration al-
gorithm after mapping the interval of integration to the compact interval [0, 1] to deal
with the oscillatory behaviour of the integrand.

2.3 ”The Little Heston trap”

Albrecher et al. [1] proposed to make an efficient transformation when computing the
characteristic function of the log forward asset price, defined by φ (u, t, T ) = Et

(
eiu log(FT )

)
.

From [40], we know that this is worth (the subscript φ1 is to differentiate it from Al-
brecher et al.’s one)

φ1 (u, t, T ) = exp
(
iu log (Ft) + C (τ , u) +D (τ , u) v̄t

)
,
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with

C (τ , u) := ψ

((
α− ρui+ d̄u

)
τ − 2 log

(
γu exp

(
d̄uτ
)
− 1

γu − 1

))
,

D (τ , u) :=
(
α− iρu+ d̄u

)( exp
(
d̄uτ
)
− 1

γu exp
(
d̄uτ
)
− 1

)
,

d̄u :=

√
(α− iρu)2 + (u2 + ui), γu :=

α− iρu+ d̄u
α− iρu− d̄u

, τ := σ (T − t) .

Due to the branch cuts od the complex square root and/or logarithm, a great care is
needed while handling such expressions. We refer to [1], section 3, for a detailed
explanation of the fact that switching from γu to γ−1

u prevents from discontinuity along
the evil real-negative axis. The transformed characteristic function is then :

φ2 (u, t, T ) = exp
(
iu log (Ft) + C̃ (τ , u) + D̃ (τ , u) v̄t

)
,

with

C̃ (τ , u) := ψ

((
α− iρu− d̄u

)
τ − 2 log

(
γ̃u exp

(
−d̄uτ

)
− 1

γ̃u − 1

))
,

D̃ (τ , u) :=
(
α− iρu− d̄u

)( exp
(
−d̄uτ

)
− 1

γ̃u exp
(
−d̄uτ

)
− 1

)
,

γ̃u :=
1

γu
=
α− iρu− d̄u
α− iρu+ d̄u

.

2.4 The Lewis-Lipton approach

Independently, Lewis in [50] and Lipton (cf. [52] and [51], in the context of FX options)
suggest to use a more tractable form of the classical inverse Fourier representation,
which corresponds to the re-writing of the payoff of a Call like:

(FT −K)+ = FT −min(FT , K)

The abstract pricing formula reads, in a world with no interest rates:

E[(FT −K)+] = F0 −
K

π

∫ +∞

0

<
(
exp((iu+ 1

2
)k)φ

(
u− 1

2
, 0, T

))
u2 + 1

4

du

where k = log(K) and φ is the characteristic function of the distribution of the log of
the underlying at time T defined in Section 2.3.

One of the main interests of this expression is that there is no singularity in the inte-

c© Zeliade Systems SAS 8/26 ZWP-0004– March, 2011



grand, unlike the previous approach.

The Lewis-Lipton approach is very often used in practice ([31], [59], [42]). It is also one
of the key ingredients in the work of Tehranchi on the asymptotics of implied volatility
([60]).

2.5 Lewis expansion

When the volatility of volatility σ becomes small, the method by integration described
in Section 2.1 above looses some accuracy, so Lewis [50] proposed the following ap-
proximation. Let σ2 (x) denote the implied variance for a log forward moneyness x,
we have

σ2 (x) = I0 + I1 (x) + I2 (x) ,

where the Ii are given by

I0 := θ +
v0 − θ
κT

(
1− e−κT

)
I1 (x) :=

σJ1

T

(
1

2
+

x

TI0

)
I2 (x) :=

σ2

T

{
J3

(
x2

2T 2I2
0

− 1

2TI0

− 1

8

)
+ J4

(
x2

T 2I2
0

+
x

TI0

− 4− TI0

4TI0

)
+
J2

1

2

(
− 5x2

2T 3I3
0

− x

TI0

+
12 + TI0

8T 2I2
0

)}
,

with

J1 :=
ρT

κ

(
θ − (v0 − θ) e−κT

)
+
v0 − 2θ

κ2

(
1− e−κT

)
J3 :=

T

2κ2

(
θ − 2 (v0 − θ) e−κT

)
+

1− e−κT

2κ3

((
v0 −

θ

2

)(
1 + e−κT

)
− 2θ

)
J4 :=

ρ2

κ3
(v0 − 3θ) +

ρ2θ

κ2
t+

ρ2

κ3
(3θ − v0) e−κt +

ρ2t

κ2
(2θ − v0) e−κt +

ρ2t2

2κ
(θ − v0) e−κt.

Remark 6. Even if σ does not appear anymore in the rescaled formulation of Heston, the limit
as t̄ tends to zero is not the same as the one in the original Heston when t tends to zero, as the
other parameters in the rescaled Heston also depend on σ.

Small vol of vol asymptotics are also computed in Lipton’s book ([51]).

2.6 Simulation of the Heston model

The option pricing formula above it valid for European vanilla options. For exotic op-
tions, in particular path-dependent options, one shall need to use either pde methods

c© Zeliade Systems SAS 9/26 ZWP-0004– March, 2011



or Monte Carlo simulations. However, the square-root function in the stochastic differ-
ential equation for the variance process in (1) is subtle to handle. As a simple example,
let us consider a naive Euler discretisation of the variance process alone between time
t > 0 and time t+∆t. We have vt+∆t = (1− κ∆t) vt+κθvt+σñ

√
vt∆t, where ñ is a Gaus-

sian random variable with zero mean and unit variance. This clearly implies that given
vt > 0, the probability P (vt+∆t < 0) = P

(
ñ < −

(
(1− κ∆t) vt + κθ∆t

)
/
√
σ2vt∆t

)
is

strictly positive and decreases as the time step ∆t tends to zero. When simulating
paths of the variance process, even if the Feller condition holds, the process can take
negative values, and the square root is then not well-defined anymore. Several ”fixes”
have been proposed in the literature; they are essentially based on considering, at each
time step, some combination of the absolute value (or the positive part) of the variance
process. We refer the interested reader to [53] to a precise description of the different
Euler schemes that have been developed to solve this issue. In the same spirit, Jaeckel
& Kahl [41] have proposed a Milstein scheme to simulate both processes. However
their simulation ensures that the variance process remains positive if and only if the
condition 4κθ > σ2 is satisfied, which is often violated in practice. Unfortunately they
do not provide a solution to this, but a fix similar to that for Euler schemes is usually
applied in practice.

Even so, according to Broadie & Kaya [12], Euler schemes converge extremely slowly
for the simulation of the Heston stochastic volatility model. In [12], they provide an
”exact” method for simulating the process, relying on the computation of Bessel func-
tions. Indeed, consider the stock price process following the Heston dynamics (1), then
it is straightforward to see that, given

∫ t
0
vsds and

∫ t
0

√
vs dZs, we have

log

(
Ft
F0

)
∼ N

((
κρ

σ
− 1

2

)∫ t

0

vsds+
ρ

σ
(vt − v0 − κθt) , (1− ρ2)

∫ t

0

vsds

)
,

where N denotes the Gaussian distribution, so that simulating Ft boils down to sam-
pling from the conditional distribution

(∫ t
0
vsds | v0, vt

)
. They do so by numerical in-

version of its characteristic function. This scheme has the advantage of being unbi-
ased; however, its numerical complexity makes it difficult to implement efficiently and
is henceforth scarcely used in practice. Note that Glasserman & Kim [32] have pro-
posed a way to speed up the computation of the inverse characteristic function using
the theory of squared Bessel bridges. Another scheme widely used in practice is the
[5] scheme, which carefully handles the conditional distribution of the discretised vari-
ance when it becomes negative by choosing a distribution giving weight to the barrier
0 and an additional positive point controlled by the matching of the 1st and 2nd local
moments, as usual. More advanced simulation methods have recently been developed
in [57] or in [2] and [3], based on cubature methods.
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2.7 Calibration

The general approach to the calibration of parametric models, like Heston, is to apply a
least-square type procedure either in price or implied volatility. This kind of approach
will in general be very sensitive to the choice of the initial point, which will very often
in practice drive the selection of the local minima the algorithm will converge to. The
various explicit formulae for short or long term asymptotics, conveniently inverted,
may come into play to get a pertaining initial point, even if, as we shall see, some
care is needed in the large correlation regime. It might be useful too to work in rescaled
parameters: this will feed the optimisation algorithm with the adequate variable axes.

Such algorithms will typically converge in a few seconds on a standard laptop. An
order of magnitude can be gained by using the derivatives of the price, as described
for instance in [56].

3 Implied volatility asymptotics

In this section, we present an overview of the many recent results concerning the
asymptotic properties of the Heston model, in particular those of the corresponding
implied volatility. We first present the results which hold in both correlation regimes,
and then those depending on the correlation regime. In the following subsections we
shall denote σT (x) the implied volatility of a European Call option written on the (for-
ward) asset price Ft, with strike K = F0ex maturing at time T . We will also denote
Xt = log (Ft) the log-forward price for convenience. Many results in this section will
be based on the knowledge and the properties of the Laplace transform of the model.
It hence worth recalling its exact form. For any t > 0,we define the moment generating
function Λt of the Heston model by

Λt(u) := logE
(
eu(Xt−x0)

)
, for all u ∈ R such that the expectation exists. (5)

3.1 General asymptotic results

3.1.1 Short-maturity behaviour

The short-maturity behaviour of the Heston model has recently attracted quite a few
people, with a focus on applications of Varadhan’s seminal work [61] on short-time
behaviour of diffusion processes. Berestycki et al. [11] showed that, in a fairly general
stochastic volatility model, the short-time implied volatility is the viscosity solution to
a certain PDE; Durrleman [20] characterised and solved this PDE in the Heston model,
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and Labordère [36] characterised the small-time behaviour of the implied volatility us-
ing the heat kernel expansion on a Riemannian manifold. Finally, in [22], Feng et al.
worked out the short-time behaviour of the Heston model in a fast mean-reverting
regime using large deviations theory, Alòs & Ewald [4] in a small volatility of volatil-
ity regime using Malliavin calculus, and Medvedev & Scaillet obtained the short-time
behaviour of general stochastic volatility models by means of asymptotic expansion of
the corresponding pricing PDE. We present here the main result of interest in practice
for the Heston model, as proved in [23]. Let us define the limiting moment generat-
ing function Λ : D → R by Λ(u) := lim

t→0
tΛt (u/t), for all u ∈ D, where D is a closed

interval of the real line containing the origin (see [23] for its expression in terms of the
Heston parameters). In [23],the authors prove that the function Λ has the following
representation:

Λ(u) =
v0u

σ

(√
1− ρ2 cot

(ρσu
2

√
1− ρ2

)
− ρ
)−1

, for all u ∈ D.

Let us now define the Fenchel-Legendre transform Λ∗ of Λ by the variational repre-
sentation Λ∗(x) := sup {ux− Λ(u), u ∈ D}, for all x ∈ R. Then the following theorem
holds.

Theorem 7. Let Ft ∼ H (F0, v0, κ, θ, σ, ρ, t), then as the maturity t tends to zero,

lim
t→0

σt(x) =


|x|√

2Λ∗(x)
, if x 6= 0

√
v0

(
1 +

ρσx

4v0

+

(
1− 5ρ2

2

)(
ρσ

v0

)2
x2

24
+O

(
x3
))

. if x = 0

Remark 8. The Legendre transform Λ∗(x) is not available in closed-form here, but can be
written as Λ∗(x) = xp∗(x) − Λ (p∗(x)), where p∗(x) is the unique solution to the equation
Λ′ (p∗(x)) = x.

Remark 9. Note that the ATM result coincides with the formula on page 127 in [50] and
section 3.1.2. in [20]. For higher-order terms (in powers of t), see the recent preprint [26].
Adding higher-order terms allows one to calibrate the term structure of the short-maturity
implied volatility smile, not the limiting smile only. Forde et al. [26] have proposed a calibration
methodology based on these higher-order asymptotics for small maturities in the Heston model,
and we refer the interested reader to the corresponding paper for more details on this matter.

3.2 The good correlation regime

We present here asymptotic results in the case κ− ρσ > 0, i.e. α > ρ.
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3.2.1 Extreme strikes

In [49], Lee provided the first general result on the asymptotics of the implied volatility,
relating the exploding behaviour (to be defined below) of the asset price process to the
slope of the smile in the wings. Benaim & Friz ([8] and [9]) sharpened and extended
Lee’s results by showing under which circumstances the lim sup in Proposition 10 be-
low is a genuine limit. To be able to use this result in practice, one therefore needs the
explosion times of the process, which are derived in [6]. In the Heston case, we can
provide more precise results, which we state in the following corollary.

Proposition 10. Fix t > 0 and let

βR(t) := lim sup
x→+∞

σ2
t (x)t

x

denote the right slope of the total implied variance. Then we have the equality

βR(t) = 2− 4
(√

ω∗(t) (ω∗(t)− 1)− (ω∗(t)− 1)
)

where ω∗(t) > 1 is the unique positive solution of t∗(ω∗(t)) = σt with

t∗(ω) :=
4√
−D(ω)

(
π11{a(ω)<0} + arctan

(√
−D(ω)

a(ω)

))

and a(ω) := 2(ρω − α), b(ω) := ω (ω − 1), and D(ω) := a2(ω)− 4b(ω).

The formula given in the above proposition, though not in closed form, is straightfor-
ward to solve numerically, as can be seen in Figure 1 below. When t tends to infinity,
ω∗(t) tends to the strictly positive root ω+ > 1 of D(ω) and the formula boils down to
the following:

Corollary 11. As t tends to infinity, the following closed-form formula holds,

βR(∞) =
2

(1− ρ)

(√
(2α− ρ)2 + (1− ρ2)− (2α− ρ)

)
Proof. (of Proposition 10 and Corollary 11): both results follow directly from Proposi-
tion 3.1 and Corollary 6.2 in [6] as well as [49].

The left slope of the asymptotic smile is obtained easily using the symmetry property
detailed in Section 1.4. Finally, very recently, Gulisashvili, in [34] and [35] provided
sharp asymptotic estimates for the wings of the implied volatility smile under a zero-
correlation assumption, thus refining Lee’s result. Let us fix a maturity t > 0 and
consider strikes of the form F0ex. Friz et al. [28] have recently improved this wing
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Figure 1: t∗(ω) for α = 0.2, σ = 0.2, ρ = −0.3. We illustrate how to numerically deter-
mine the optimal ω∗ for a given maturity t = T .

behaviour in the correlated Heston model. They indeed proved that there exist real
constants β1, β2 and β3 such that

σ2
t (x)t =

(
β1

√
x+ β2 + β3

log(x)√
x

+O
(
φ(x)√
x

))2

, as x tends to infinity, (6)

where φ is any positive increasing function on (0,∞) such that lim
x→∞

φ(x) = ∞. Recall
the definition of the moment explosion t∗(m) := sup {t > 0,E (Smt ) <∞}. Note that the
three constants β1, β2 and β3 are characterised in terms of the critical moment m∗ and
the critical slope s∗ defined by

m∗ := sup
m≥1
{E (Smt ) <∞} , and s∗ := − ∂t∗(m)

∂m

∣∣∣∣
m=m∗

.

3.2.2 Large maturity behaviour

In [50, Chapter 6], Lewis obtained the large-time behaviour of the implied volatility
under the Heston model as a second-order polynomial in the forward log-moneyness
Xt = log (Ft). However, his proof exhibits a couple of typos and the resulting formula
is partially wrong. In [24], using large deviations theory, Forde & Jacquier rigorously
extended (and corrected) Lewis’ zeroth order asymptotic result to the case where the
strike is of the form F0exT (i.e. is a function of the maturity T ). The intuitive reason for
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this parameterisation is that, as the maturity gets large, the range of possible strikes
gets large too. Define the limiting cumulant generating function Λ̄ : D → R by

Λ̄(u) := lim
t→∞

t−1Λt(u) = ψσ
(
α− ρp−

√
(α− ρp)2 − (p2 − p)

)
,

where the moment generating function Λt is defined in (5), and where D is a closed
interval of the real line containing [0, 1] (see [24] for an explicit representation). We fur-
ther define its Fenchel-Legendre transform Λ̄∗ : R→ R by Λ̄∗(x) := sup

{
ux− Λ̄(u), u ∈ D

}
.

In [24], the authors proved that it has the explicit representation

Λ̄∗(x)(x) = xp∗(x)− Λ̄ (p∗(x))

with

p∗(x) :=
1− 2αρ

2(1− ρ2)
+

(σψρ+ x)

2(1− ρ2)

√
1 + 4α2 − 4αρ

x2 + 2xρσψ + σ2ψ2
.

Let us define the function σ∞ : R→ R by

σ∞(x) :=
√

2

(
sgn

(
θ̃

2
− x

)√
Λ̄∗(x)− x+ sgn

(
x− θ

2

)√
Λ̄∗(x)

)
, (7)

where we recall that θ̃ := σψ/ (α− ρ).

Theorem 12. For all real number x the the equality lim
t→∞

σt(x) = σ∞(x) holds.

Higher-order terms (in t−1) can be obtained to improve the accuracy of the approxima-
tion, see [27] for a precise statement and its proof.

Corollary 13. In the case x = 0 in Theorem 12, the large-time at-the-money implied variance
is given by

σ2
∞(0) =

2ψσ

2α + 1
h(α, ρ),

where

h (α, ρ) :=
8α + 4

1− ρ2
g(α, ρ), and g (α, ρ) :=

√(
α− ρ

2

)2

+
1− ρ2

4
− α +

ρ

2
,

and where the limit as ρ tends to −1 (or 1) holds since lim
ρ→−1

h(α, ρ) = 1.
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3.2.3 Long-term ATM slopes and curvature

Using the functions g and h defined in Remark 13 and differentiating the implied vari-
ance slopes derived here above, we obtain the long-term ATM implied variance slopes:

lim
t→∞

∂xσ
2
t (x)t

∣∣
x=0

=
2ρ

2α + 1
h(αρ) (8)

Note that these slope results are obtained directly from the large asymptotics of the
implied variance, which is not rigorous. Concerning the curvature, the only known
result is in [50]. However, it indicates that the curvature is always negative, which does
not seem reasonable.a

3.3 The large correlation regime

We derive here some asymptotic results when α ≤ ρ.

3.3.1 Extreme strikes

We give an equivalent of Proposition 10 holds in the large correlation regime. Recall
the definition of the function βR : [0,∞) → R as the right slope of the total implied
variance σ2

t t:

βR(t) := lim sup
x→+∞

σ2
t (x)t

x
.

Proposition 14. For any maturity t > 0, the equality

βR(t) = 2− 4
(√

ω∗(t) (ω∗(t)− 1)− (ω∗(t)− 1)
)

holds, where ω∗ = ω∗(t) > 1 is the unique positive solution of t∗(ω∗) = σt with

t∗(ω) :=
4√
−D(ω)

arctan

(√
−D(ω)

a(ω)

)
11{D(ω)<0}+

2√
D(ω)

log

(
a(ω) +

√
D(ω)

a(ω)−
√
D(ω)

)
11{D(ω)≥0},

with
a(ω) := 2 (ρω − α) , b(ω) := ω (ω − 1) , D(ω) := a(ω)2 − 4b(ω).

Corollary 15. The limit of βR(t) as the maturity t tends to infinity is equal to two.

Proof. As t tends to infinity, the unique root ω∗ of t∗(ω∗) = t tends to 1, so that the
corollary follows from Proposition 14 with ω∗ = 1.

aThis is confirmed by a personal communication with Alan Lewis, whom the authors thank.
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Figure 2: Plot of the function ω 7→ t∗(ω) defined in Proposition 14 for α = 0.2, σ =
0.2, ρ = 0.6. Note that the function is continuous at the point ω+ but has two different
analytic representations below and above it.

3.3.2 Slippy Slopes

Note that most of the large-time results obtained in Section 3.2.2 rely on the assump-
tion κ−ρσ > 0 (α > ρ). It turns out that, when this condition is not satisfied, we do not
know the precise asymptotics. As we mentioned in the introduction, this case is often
ruled out in papers, which consider a negative correlation parameter ρ. Although this
does make somehow sense on Equity markets, it does not for FX-related derivatives.
In [58], the authors prove a sharp upper bound for the slope of the total implied vari-
ance (squared volatility multiplied by the maturity). It is then straightforward to see
that the known slopes for the implied variance in the Heston model (as presented in
the previous sections) violate this upper bound when κ− ρσ ≤ 0.
Recently, [18] and [60] proved some results when this condition fails, the first one
studying the moment explosions (not treated in [6] in that case), the second one provid-
ing some insights for the long-term implied volatility asymptotics. A somehow similar
theorem to Theorem 12 is currently under progress.
The following proposition, together with the subsequent remark, clearly explains in
what sense the results derived in the good correlation regime do not hold here anymore.

Proposition 16. (see [58]) Under no-arbitrage conditions, the slope of the total implied vari-
ance can not be greater than 4.

Remark 17. In (8) it is easy to see that, as ρ tends to one, for all 0 < α < ρ/2, the quantity
2ρ

2α+1
h(α, ρ) tends to infinity, which contradicts the above proposition.

c© Zeliade Systems SAS 17/26 ZWP-0004– March, 2011



3.4 Application: the SVI connection

We highlight here a concrete example of the usefulness of the aforementioned asymp-
totic results. In 2004, Jim Gatheral [30] proposed the so-called Stochastic Volatility In-
spired (SVI) parametric form for the implied (squared) volatility. Let σ2

SVI(x) represent
the squared implied volatility evaluated at the log-moneyness x ∈ R. Gatheral pro-
posed the following parametric form:

σ2
SVI(x) = a+ b

(
r (x−m) +

√
(x−m)2 + ζ2

)
, (9)

where a and m are real numbers, b and ζ are strictly positive and r ∈ [−1, 1]. This
parametric form allows for a clear interpretation of each parameter in terms of the
shape of the implied volatility smile: a gives the overall level of the variance, m is just
a parallel translation parameter along the x axis, ρ determines the degree of symmetry
of the graph, ζ determines the smoothness of the at-the-money (x = 0) smile and b

characterises the angle between small and large x. Even though, as a parametric form,
this proposed smile does not guarantee absence of arbitrage, it shows very accurate
calibration results to market data.

In Section 3.2.2,we have derived the large-maturity limit σ∞ (see (7)) for the Heston
model defined in (1), for strikes of the form F0ext. Gatheral and Jacquier [31] recently
proved the following proposition, already conjectured by Gatheral. Define the two
numbers ω1 and ω2 as

ω1 :=
4κθ

σ2 (1− ρ2)

(√
(2κ− ρσ)2 + σ2 (1− ρ2)− (2κ− ρσ)

)
, and ω2 :=

σ

κθ
,

and consider the following mappings between SVI parameters and Heston parameters:

a :=
ω1

2

(
1− ρ2

)
, b :=

ω1ω2

2t
, ζ :=

√
1− ρ2t

ω2

,

m := − ρt
ω2

, r := ρ.
(10)

Proposition 18. With the mapping (10), the equality σ2
∞(x) = σ2

SVI(x) holds for all x ∈ R.

We refer the reader to the corresponding paper [31] for more details about the implica-
tions of such a result. This result in particular implies that the SVI parameterisation is
free of arbitrage for large enough maturities. One might therefore wonder about fixed
maturities. A simple Taylor expansion of the implied volatility as the (log) strike tends
to infinity leads to

σSVI(x) = x1/2
√
b (1 + r) + x−1/2a− bm (1 + r)

2
√
b (1 + r)

+O
(
x−3/2

)
, as x tends to infinity.

c© Zeliade Systems SAS 18/26 ZWP-0004– March, 2011



Therefore the SVI parameterisation (like the Heston model) is linear in the wings for
fixed maturities at first order. However, at second order, the Heston model also exhibits
a constant term, absent in the SVI formulation, which tends to zero as the maturity
tends to infinity (see (6)). For fixed maturities, this implies (i) that this parameterisation
is not consistent in the wings with the Heston model and (ii) that some arbitrage can
occur.

3.5 Symmetric smiles and the uncorrelated Heston model

In the no-correlation ρ = 0 case, the smile is symmetric - the uncorrelated Heston
model is invariant by the ”Share measure transform”. For symmetric models in gen-
eral, there is an explicit relation between the ATM volatility and the (risk neutral) ATM
cumulated probability function (i.e., P (Ft < F0)). In [19], an additional step is per-
formed which gives, for any strike (not only the ATM strike), an explicit formula for
the Call/Put price in term of the Laplace transform of the cumulated variance

∫ T
0
Vudu.

For many stochastic volatility models, this Laplace transform is known explicitely, and
semi-closed formulas follow. This encompasses the uncorrelated Heston model. A
noteworthy fact is that complex analysis and Fourier transforms are eventually not
required in the uncorrelated setting. The article [19] also computes the optimal SVI
approximation of the uncorrelated Heston model. This gives very efficient semi-closed
approximation formulas for the implied volatility.

4 Beyond the Heston model

4.1 Time-dependent Heston

In order to improve the Heston model—for instance allowing a joint calibration to
both equity and volatility derivatives—one could try to make the parameters time-
dependent. Let Ft ∼ H (S0, v0, κt, θt, σt, ρt, t). In [13], Buehler showed that in order
to be able to fit a variance swap curve consistently, one needs to keep κt and the
product ρtσt constant. In [25], the authors proposed a method to calibrate a Heston
model with time-dependent parameters (all but κt) to a given Variance Swap curve. In
terms of pricing, Benhamou & al. [10] proposed an analytical approximation for Euro-
pean vanilla options using Malliavin calculus, in a small volatility of volatility regime,
which can be seen as an extension of the Lewis asymptotics to the time-dependent case,
whereas Elices [21] calibrates a time-dependent Heston model extending the original
Fourier-transform approach to the time-dependent case.
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However, practitioners are not always satisfied by this way of extending a model to
time-dependent parameters and therefore other extensions, keeping a time-homogeneous
model, have been proposed. On the technical front, note that if the parameters are time-
dependent, one has to watch carefully the branch cuts. The rotation algorithm would be
very useful for this matter.

4.2 Multifactor Heston models

Another approach in extending the traditional Heston model has been to introduce the
so-called double Heston models. There are actually two types of ”Double Heston”,
each corresponding to a special approach: Buehler [13] proposed the double Heston
as a Heston model where the long-term variance also follows a CIR dynamics. This
is consistent with his variance swap curve approach, where each dimension of this
”Multi-Heston” corresponds to a factor of the variance curve. However, there is no
closed or semi-closed form formula for the pricing of vanilla options in this frame-
work. The other approach (see [45], [16]) is to introduce several volatility process,
independent one from another, each driven by a Brownian motion acting on a separate
time scale. This approach is appealing since

• the characteristic function is available in closed-form (hence allowing a semi-
closed form formula for vanilla similar to the standard Heston model).

• the induced correlation between the volatility of volatility process and the re-
turns is stochastic, therefore allowing a better fit to the so-called stochastic skew
observed on FX markets.

• finally, as it can be represented (in terms of its characteristic function) as the prod-
uct of two independent Heston, the asymptotic results presented above are easily
computable.

Recent papers on this topic include [43] and [7].

4.3 Affine stochastic volatility models with jumps

The method used in [23] and [24] to prove the small and the large-maturity behaviour
of the implied volatility in the Heston model is based on the properties of the Laplace
transform of the stock price, which is known in closed-form. In [39], the authors extend
the large-maturity results to the general class of affine stochastic volatility models with
jumps. This class of models include the Heston model, the Heston model with jumps,
the Bates model,the Barndorff-Nielsen & Shephard model as well as all exponential
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Lévy models. By studying the corresponding Riccati equations and the properties of
the moment generating function Λt(u) := logE

(
euXt

)
, they prove the following the-

orem under mild conditions generally satisfied by market data. Let σt(x) denote the
implied volatility at maturity t and corresponding to a strike F0ext.

Let us define Λ(u) := lim
t→∞

t−1Λ (u) and its Fenchel-Legendre transform

Λ∗(x) := sup {ux− Λ(x), x ∈ R}

Let us further define, similarly to (7) the function σ∞ : R→ R+ by

σ∞(x) :=
√

2
(

sgn (Λ′(1)− x)
√

Λ∗(x)− x+ sgn (x− Λ′(0))
√

Λ∗(x)
)
, for all x ∈ R,

Theorem 19. The implied volatility σt converges pointwise to σ∞ as t tends to infinity.

Remark 20. In [39], the authors prove that the convergence is uniform on any compact subsets
of R \ {Λ′(0),Λ′(1)}.

Conclusion

Although known and used for quite some time both by practitioners and academics, a
rather large number of papers recently exhibited some lesser known (or unknown so
far) features of the Heston model, therefore greatly improving our understanding, and
allowing for robust and more efficient pricing and calibration algorithms, even if some
theoretical issues still remain, notably in the large correlation regime κ− ρσ ≤ 0.
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