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We describe a robust calibration algorithm of a set of SSVI slices (i.e. a set of 3 SSVI parameters θ, ρ, ϕ

attached to each option maturity available on the market), which grants that these slices are free of But-

terfly and Calendar-Spread arbitrage. Given such a set of consistent SSVI parameters, we show that the

most natural interpolation/extrapolation of the parameters provides a full continuous volatility surface free

of arbitrage. The numerical implementation is straightforward, robust and quick, yielding an effective,

parsimonious solution to the smile problem, which has the potential to become a benchmark one.

We thank Antoine Jacquier and Stefano De Marco for useful discussions and remarks. All remaining errors

are ours.

1. Introduction: the xSSVI family

Gatheral initiated in 2004 the Stochastic Volatility Inspired parametric model for the volatility smile, a

5-parameter formula for the total variance at a given maturity. Gatheral’s inspiration was of geometric

nature, in relation to Roger Lee’s moment formula and also to his experience of smiles produced by stochastic

volatility models like Heston. SVI fits remarkably well in practice, and it is even difficult to find circumstances

in which SVI fails (Fabien Le Floch provides such an example on his blog [4]). Despite its simplicity, the

calibration of SVI is not straightforward, and Zeliade has a whitepaper (cf [1]) with a re-parameterization

trick which robustifies a lot the process (more detailed calculations are available in Stefano De Marco’s PhD

Thesis, [3]).

SVI has 2 main missing features: it does not model the whole volatility surface, and there are no known

conditions on SVI parameters which grant absence of arbitrage (even tractable sufficient conditions).

Then comes SSVI: many teams worked on producing an SVI-like model for the whole volatility surface

in years around 2010, and the only successful one was the Jim Gatheral and Antoine Jacquier pair, who

designed the Surface SVI model which has the 2 features SVI missed (cf [5]). SSVI is (this may seem

natural) parameterized by the ATM (Forward) total variance curve θt, so it will automatically fit perfectly

the ATMF point, a constant correlation parameter ρ (which should play the role of the leverage parameter),

and a curvature curve ϕ:

w(k, θt) =
θt
2

(
1 + ρϕ(θt)k +

√
(ϕ(θt)k + ρ)2 + (1− ρ2)

)
(1)

Each smile has so only 3 parameters, and explicit and tractable sufficient conditions have been obtained by

Gatheral and Jacquier to preclude Butterfly arbitrage:

θtϕ(θt) ≤
4

1 + |ρ|
(2)

θtϕ(θt)
2 ≤ 4

1 + |ρ|
(3)

Moreover, necessary and sufficient no Calendar Spread conditions are provided. SSVI works reasonably

well in practice, and its calibration is easier than SVI. Yet the fact to keep the correlation constant across

maturities depreciates the fit quality. Sebas Hendriks (student of Kees Osterlee at the University of Delft,

during his master internship at Zeliade) and Claude Martini tackled this issue (cf [2]): they managed to obtain
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simple necessary and sufficient conditions for the consistency of 2 SSVI slices attached to different maturities;

such conditions are not available for SVI smiles. By a SSVI slice we mean the SSVI parameterization at

a given maturity, with its own correlation parameter, possibly depending on the maturity. Conditions for

the absence of Calendar Spread arbitrage in continuous time follow, and the corresponding extended SSVI

(eSSVI) model extends SSVI with a maturity-dependent ρ(θt). An explicit representation formula for the

correlation is also obtained, which allows to produce easily concrete low-dimensional parametrization for the

correlation curve. Some power law type examples are provided.

The effective calibration of eSSVI has not been investigated yet, this is the purpose of this note. We proceed

in 2 steps, each of them having some interest on its own:

1. We calibrate SSVI (equivalently, eSSVI) slices to the available maturities on the market in a way

which grants the absence of Butterfly and of Calendar Spread arbitrage, making use of a very robust

calibration algorithm, which does not use any blackbox optimizer beyond a one-dimensional Brent

algorithm.

2. We show that the most naive interpolation/extrapolation scheme of the slice parameters is arbitrage

free. This is a remarkable property of eSSVI.

We obtain therefore a continuous time arbitrage-free eSSVI model calibrated to the market. We discuss in

the conclusion the virtues of this scheme, that we consider as the quickest and cheapest way (so far) to solve

(not perfectly though, but with a sufficient accuracy in many situations but the most demanding ones) the

smile problem.

2. Anchored eSSVI slices with no Butterfly arbitrage

The key ingredient in our algorithm is a re-parametrization of a SSVI slice, which constrains the slice to

go through the data point (k∗, θ∗) closest to the ATM (Forward), where k denote log-forward moneyness

and θ the total implied variance. Whence the word anchored in the section title. This re-parameterization

assumes that the data in this range are very reliable, which is certainly true for not too-long term options

on indexes at least.

So θ will be expressed in terms of the parameters ρ, ϕ and this new data-driven (k∗, θ∗) pair. At first order

this amounts simply to θ = θ∗ − ρθϕk∗. We also substitute a new parameter ψ to the product θϕ, so that

eventually our anchored smiles (anchored to (k∗, θ∗)) are parameterized by the pair (ρ, ψ).

This anchor trick can be seen as a refinement of Gatheral and Jacquier initial idea to read the ATM Forward

volatility on the market (and so, take it as a parameter): it avoids a pre processing step of the market data

which computes θ by interpolation from the available bracketing strikes, which brings some noise, or the

handling of θ as an additional parameter to calibrate, which adds a dimension.

Note that we could try to anchor to more than one point, yet this is likely to put too many constraints on

the parameters, especially for large maturities.

2.1 No Butterfly arbitrage

Translating the short term no butterfly constraint reads:
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ψ ≤ 2

√
θ

1 + |ρ|

or yet ψ2 ≤ 4
1+|ρ| (θ

∗ − ρψk∗) which is equivalent to the explicit bound

ψ ≤ ψ+(ρ, k∗, θ∗)

where ψ+(ρ, k∗, θ∗) = −2ρk∗
(1+|ρ|) +

√
4ρ2(k∗)2

(1+|ρ|)2 + 4θ∗

(1+|ρ|) .

In other words, all the no-butterfly arbitrage (in the sense that they satisfy the Gatheral Jacquier bounds)

eSSVI slices anchored at (k∗, θ∗) are parameterized by the SSVI formula, where θ is replaced by its expression

in terms of (k∗, θ∗), ρ ∈]− 1, 1[ and 0 < ψ < min (ψ+(ρ, k∗, θ∗), 4
1+|ρ| ).

Also θ should be non negative, so that the constraint ψ < θ∗

ρk∗ should be enforced when active.

Note in passing that if k∗ is assumed to be small, the following expression for the SSVI total variance can

be used:

1

2
(θ∗ + ρψ(k − k∗) +

√
(ψ(k − k∗) + ρθ∗)2 + (1− ρ2)(θ∗)2)

3. Granting no Calendar-Spread arbitrage across slices

Thanks to the result in Hendriks-Martini [2] we have necessary and sufficient conditions for this. Let

(θi, ρi, ϕi)1≤i≤N a set of (e)SSVI slice parameters corresponding to increasing time to maturities 0 < T1 <

.. < TN with N > 1.

Then θi and ψi should be non-decreasing, and the condition:

|ρi+1ψi+1 − ρiψi
ψi+1 − ψi

| ≤ 1

should hold.

4. Going forward calibration

Let us re-formulate those conditions in the setting where we calibrate the slices going forward : we start by

calibrating (θ1, ρ1, ϕ1), so catering only for the absence of Butterfly arbitrage for this initial slice.

The slices are then built in the following way, where we denote by θ, ψ, ρψ the corresponding quantities

associated to the previous slice, and by (θ, ρ, ψ) the SSVI parameters for the current slice.

The absence of Calendar Spread between the two slices is granted by the conditions θ > θ, ψ > ψ and the

last condition that reads −(ψ − ψ) ≤ ρψ − ρψ ≤ (ψ − ψ), which amounts to ψ ≥ ψ−(ρ) where

ψ−(ρ) := max (
ψ − ρψ
1− ρ

,
ψ + ρψ

1 + ρ
)
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So we get again bound type conditions on ψ given ρ and the previous slice parameters. Only the first

condition θ > θ is to be investigated: by substituting θ = θ∗ − ρθϕk∗, it also amounts to a bound type

constraint ψ > ψ̂ or ψ < ψ̂ depending on the sign of ρk∗, where

ψ̂ :=
θ∗ − θ
ρk∗

The particular case ρ = 0 yields the constraint θ∗ > θ, which is directly checked on the market data at the

current slice.

5. Implementation

5.1 Algorithm

Putting all the constraints together, for a given ρ, we get a set of two-sided bound type constraints for

ψ (which is positive) possibly empty, which grants simultaneously no Butterfly arbitrage and no Calendar

Spread arbitrage with the previous slice. Given any fit objective function (a good choice is the L1 norm of

the price differences between the eSSVI price and the market price), we face for each slice a 2 dimensional

function in ψ, ρ. A very effective way to solve the minimization problem is to proceed as follows:

1. Sample ρ in the interval ]− 1, 1[.

2. For each sampled ρ use a Brent algorithm to find the point ψ, satisfying the constraints, at which the

minimum of the objective function is obtained.

3. Pick up the minimum over all the ρ.

4. Repeat the procedure on a smaller interval centered on the optimal ρ found before.

This is very naive, yet very robust, quick and effective. Moreover the minimization can be split ρ-wise on

different cores.

The global algorithm consists in calibrating the first slice, and then the subsequent slices with the constraints

produced by the calibrated parameters attached to the previous slice.

5.2 Comments

5.2.1 Choice of the initial slice

It is natural to start from the short-term slice. Very often there is a lot of curvature at short maturities, and

the close-to-ATM option price is roughly proportional to the ATM volatility, so that there will be enough

meaningful data to calibrate the initial pair ρ, ψ. There might be issues though for very short maturity

where the market will convey only information on θ (or in this case, equivalently, θ?) and not on ρ and ϕ.

Starting from the long term end is more daring, since data is in general less reliable, and there might be

much less curvature due to the fact that implied volatility smiles flatten for large maturities. Depending

on the underlying (in terms of liquidity) and the dataset (in terms of available time-to-maturities), different

strategies may be considered, including intermediate ones where the initial slice is a mid term one and the

algorithm goes in both directions. In this case the algorithm should be tweaked for the going-backward part,

with computing the upper constraints instead of the lower ones.
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5.2.2 Data consistency

It may also happen that the feasible dataset for a given slice is empty (though this never happened in our

tests), due either to a too extreme calibrated smile at a previous maturity or dubious data at the current

one. In particular if the (k?, θ?) data point is not reliable, this algorithm should not be run.

5.2.3 Robustness

This is the most appealing feature of this algorithm: besides the number of ρ sampling points, there is

no starting point nor numerical parameter to set and tweak, the algorithm is extremely robust and in this

respect can be put safely in production. 20 points is enough according to us to grant a calibration within

the bid ask in general.

5.2.4 Stability of the calibrated parameters

At each slice, the free parameters correspond to the ATM Forward slope and curvature. The fact that only 2

degrees of freedom remain after the anchoring trick brings more stability than the traditional 3-dimensional

criterion. Lastly, the no Calendar Spread constraints ensure a built-in consistency across slices which also

brings a lot of stability to the calibrated values.

5.2.5 Speed

Without any parallelization, a Python implementation for 12 maturities and an average of 98 options per

maturity (the number of options per maturity varies between 68 and 184) takes 1.2 seconds on a Intel

E5-2673 v3 processor.

On a more recent processor, as the Intel Xeon E7-8890 v3 , by parallelizing the computation of the function

ρ-wise the execution time should be cut down to 0.1 second or less. A C] implementation could also reduce

the computation time by a factor 5 (quite a conservative estimate) to a final execution time of 0.01 seconds

or less.

6. Results

We did numerous tests on several non public data sets by our clients, on Equity Index and Equity Stock

options. The algorithm performed systematically very well, with a typical average option price error below 4

bips of the underlying value. We display here some results obtained on end-of-day SPX option quotes (data

acquired from the CBOE, https://datashop.cboe.com/option-quotes) on January 8th, 2018.

6.1 Data processing

We infer the Forward and Discount Factor at each available maturity by robust linear regression leveraging

the Put-Call-Parity for mid prices. Then we select OTM options and filter out prices which are below 2 ticks

(the tick being 0.05 for SPX options). Implied volatility is computed using Jaeckel rational algorithm.
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Theta Psi Rho ATM vol (pct) Phi

Time to maturity

0.030137 0.0001 0.012 -0.224 6.4 96.33

0.106849 0.0006 0.032 -0.453 7.8 50.22

0.183562 0.0014 0.049 -0.495 8.6 35.82

0.279452 0.0025 0.066 -0.578 9.4 26.66

0.432877 0.0049 0.089 -0.610 10.6 18.38

0.701370 0.0100 0.116 -0.672 12.0 11.55

0.950685 0.0158 0.131 -0.704 12.9 8.28

1.027397 0.0174 0.134 -0.704 13.0 7.73

1.180822 0.0215 0.145 -0.725 13.5 6.75

1.449315 0.0292 0.165 -0.725 14.2 5.68

1.947945 0.0444 0.191 -0.746 15.1 4.29

2.945205 0.0750 0.243 -0.724 16.0 3.24

6.2 Comments

The implied vol fits are well within the bid-ask, except for the 3/4 shorter maturities for the left-end wing.

Those visual vol discrepancies translate though in very small errors for the price, as confirmed by the price

error plots, below 4 bips of the Forward (i.e., 4 × 10−4× the Forward value). One should consider also the

traded volumes, which are almost zero in this range of strike for those maturities.

Otherwise the fit in price is excellent across all the maturities. The shape of the calibrated correlation is typi-

cal, and shows the benefit of eSSVI versus the classical SSVI for calibrating simultaneously the medium/long

entries and the shorter ones. Lastly, the calibrated parameters evolve smoothly with the time-to-maturity.
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7. Arbitrage-free interpolation

Our starting point in this section is a set of SSVI slice parameters (θi, ψi, ρi)1≤i≤n, attached to maturities

0 < T1 < .. < Tn and such that:

• Each slice is free of Butterfly arbitrage;

• There is no Calendar Spread arbitrage between any 2 consecutive slices.

Note that the last property amounts to the fact that the total variance smile attached to the longer maturity

lies strictly above the smile attached to the lower one. It follows from this geometrical point of view that

this property is transitive, so that there is no Calendar Spread for all the slices globally.

It is required in practice to get a continuous arbitrage free volatility surface from these slices. We show below

that the natural interpolation and extrapolation of the eSSVI parameters provides a continuous eSSVI

surface which is indeed arbitrage free. This is a very nice property of the eSSVI parameterization, and

note that it is by no way built-in or automatic.

7.1 Interpolation scheme

We describe the interpolation scheme between 2 consecutive slices, which we denote by (θi, ψi, ρi) and

(θi+1, ψi+1, ρi+1).

The no arbitrage conditions read:

1. θi+1 > θi

2. ψi+1 ≥ ψi
3. ψj ≤ min

(
4

1+|ρj | , 2
√

θj
1+|ρj |

)
for j = i, i+ 1

4.
∣∣∣ρi+1ψi+1−ρiψi

ψi+1−ψi

∣∣∣ ≤ 1

For λ ∈ [0, 1] we define the following interpolation scheme:

• θλ = (1− λ)θi + λθi+1;

• ψλ = (1− λ)ψi + λψi+1;

• ρλψλ = (1− λ)ρiψi + λρi+1ψi+1.

Each such slice will be attached to a maturity t such that λ = t−Ti
Ti+1−Ti .

7.1.1 Calendar Spread arbitrage

Since θλ and ψλ interpolate linearly between ordered quantities, we will have θλ < θµ and ψλ < ψµ for

0 ≤ λ < µ ≤ 1. In the same way since ρλψλ−ρµψµ = (λ−µ)(ρi+1ψi+1−ρiψi) and ψλ−ψµ = (λ−µ)(ψi+1−ψi)
condition 4 is satisfied also. So there is no calendar spread arbitrage in between 2 interpolated slices within

the same bucket (i; i+ 1).

By the transitivity property above we deduce that there is no arbitrage between 2 interpolated slices in

different buckets.
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7.1.2 Butterfly arbitrage

To alleviate notations we will write the proof for the 1st maturity bucket.

We start by checking that ψλ <
4

1+|ρλ| holds. Since the condition is verified for λ = 0, 1 it suffices to show

that the derivative of f(λ) = ψλ(1 + |ρλ|) = ψλ + |ρλψλ| has constant sign. Since f ′(λ) = ψ2−ψ1 + (ρ2ψ2−
ρ1ψ1)sign(ρλ) and ψλ, ρλ satisfy condition 2. and 4., we conclude that f ′ > 0.

Moreover, whenever ρ1 and ρ2 have the same sign, the function f is linear, while if the sign of ρ changes,

the function f is piecewise linear.

We now check that the condition ψλ < 2
√

θλ
1+|ρλ| holds. This is equivalent to requiring that

ψλ(ψλ + |ρλψλ|) < 4θλ

We will start by considering the case where ρ1 and ρ2 have the same sign:

In this case we can rewrite the previous equation as

(ψ1 + λ(ψ2 − ψ1)) (a+ bλ) < 4 (θ1 + λ(θ2 − θ1)) ,

where

a = ψ1(1 + |ρ1|) and b = ψ2 − ψ1 + |ρ2|ψ2 − |ρ1|ψ1 > 0 .

Observe that the LHS is a convex function since b > 0, so it lies below its chord on [0, 1], which in turn lies

below the RHS since the requirement is fulfilled for λ = 0, 1.

We are now left with the case where ρ0 and ρ1 have different signs:

In this case there is a unique λ∗ such that ρλ∗ = 0. Condition 3. reduces, for λ∗, to

ψλ∗ < min(4, 2
√
θλ∗) .

Since ψi < 4, ψi < 2
√
θi i = 0, 1, and since the square root is a concave function, the condition above is

satisfied at λ∗.

Since f is linear on each interval [0, λ∗] and [λ∗, 1] we can apply the reasoning for ρ with constant sign on

the two intervals [0, λ∗] and [λ∗, 1] to conclude that the non-arbitrage conditions are verified also in the case

in which ρ1 and ρ2 have different signs.

7.2 Short term extrapolation

How to extrapolate to the time bucket ]0, T1[?

Since the total variance should goes to zero in any reasonable model as the time to maturity goes to zero,

it is necessary in a continuous time eSSVI from the no arbitrage condition 3. that ψ goes to zero as well.

Therefore the simplest short term extrapolation scheme is as follows:

• θt = λθ1;

• ψt = λψ1;
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• ρt = ρ1.

Here λ = t
T1

.

Then conditions 1., 2. and 4. are readily checked. Conditions 3. reads in turn:

λψ1 < min

(
4

1 + |ρ1|
, 2

√
λθ1

1 + |ρ1|

)

Now λψ1 < ψ1 <
4

1+|ρ1| and λψ1 < 2
√

λθ1
1+|ρ1| follows from the fact that

√
λψ1 < ψ1 < 2

√
θ1

1+|ρ1| for λ < 1.

Lastly the absence of Calendar Spread arbitrage between 2 slices within the first maturity bucket is shown

exactly as above, and between a slice in the first maturity bucket and another one after T1 by transitivity.

7.3 Long term extrapolation

To extrapolate beyond TN , pick up any continuous increasing function u(t) on [TN ,∞[ such that u(TN ) = 0,

and set:

• θt = θN + u(t);

• ψt = ψN ;

• ρt = ρN .

Then conditions 1. to 4. are readily checked. In the same way there is no calendar spread arbitrage between 2

slices living beyond TN . With the same transitivity argument as before, there is no calendar spread arbitrage

between one such slice and a slice living below TN .

8. Conclusion

We have designed a novel calibration algorithm of the eSSVI model, which relies on the forward slice-by-slice

calibration of SSVI slices constrained to go exactly through the data point closest to the Forward, computing

explicitly the no Butterfly and no Calendar Spread constraints. The naive piecewise interpolation/extrap-

olation of the slice parameters is shown to be also free of arbitrage. All in all we have a simple, quick

and robust calibration algorithm of the volatility surface, which fits very well except maybe in the more

demanding (tight market-making) situations. Moreover it is straightforward to store and re-use the cali-

brated parameters (θi, ρi, ψi)1<i<N alongside the market parameters (Ti, Fi, DFi)1<i<N (where F denoted

the Forward and DF the Discount Factor) to parsimoniously serialize the whole volatility surface, which is

very useful for constituting histories of volatility surfaces, e.g. for risk purposes.
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