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1. Abstract

Since its introduction in 2001, the Expected Shortfall (ES) quickly became the standard risk measure used
by financial institutions including central clearing counterparties (CCPs). Indeed, many CCPs switched
from the Value at Risk (VaR) to the more conservative ES to compute their initial margins. The need of a
sound backtest for the ES arose then naturally. In 2011, the proof that the Expected Shortfall (ES) lacks a
property called elicitability has led to the incorrect conclusion that the ES is not backtestable. Three years
later, Acerbi and Szekely designed three possible backtests for the ES and, since then, many other backtests
have been proposed in the practitioner literature. In this work we study four of these test statistics from
both a theoretical and practical point of view and eventually give some advice for CCPs in search of a good
backtest for ES.
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2. Expected Shortfall vs Value-at-Risk

Value-at-Risk (VaR) has become a standard risk measure for financial risk management due to its conceptual
simplicity, ease of computation, and immediate applicability. VaR measures the maximum potential change
in the value of a portfolio with a given probability over a pre-set horizon:

VaRα

(
PnLd

)
= − inf{x|P (PnLd ≤ x) > α}

Nevertheless, VaR has several conceptual problems:

• VaR measures only a quantile of PnL distributions and does not account for the losses beyond this
level;

• VaR is not coherent, since it is not subadditive, a property that implies that the sum of sub-VaRs is not
necessarily conservative.

The latter item means that if we split a portfolio into two sub-portfolios and compute the VaR for each
sub-portfolio then the sum of the two VaRs can be smaller than the true VaR of the global portfolio.

As an alternative to the VaR risk measure, Artzner et al. (1997) [4] proposed Expected Shortfall (ES shortly,
also called “conditional VaR”, “mean excess loss”, “beyond VaR”, or “tail VaR”). ES is the conditional
expectation of loss given that the loss is beyond the VaR level; that is, the expected shortfall is defined
as follows:

ESα

(
PnLd

)
= E

[
−PnLd | PnLd ≤ VaRα

(
PnLd

)]
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ES is generally considered a more useful risk measure than VaR thanks to its robustness and to the fact that
the ES verifies the subadditivity property, as opposed to the VaR. This means that the sum of two sub-ESs
is greater than the global ES, entailing an inherent conservativeness.

The ES takes into account, by definition, the severity of the tail observations beyond the VaR. This makes
the ES a more conservative risk measure than the VaR, for the same confidence level:

ESα

(
PnLd

)
≥ VaRα

(
PnLd

)
.

Moreover, the ES is more robust: the fact that the ES is an average of all PnLs beyond the VaR makes
its estimation more stable, since a change in a single observation would be mitigated by the rest of the
values in the average. In the VaR case, its estimation is driven by a single value (or at most two values
if a linear interpolation is used), which means that the VaR would suffer from large jumps when the time
window moves and extreme observations are included or excluded. This robustness/stability plays an
important role in diminishing the procyclicality of the margins, since when extreme market moves happen,
the margins would increase slower than for VaR. This prevents, partially, from exacerbating the market
stress events.

All these advantages of the ES explain its use by the majors CCPs for their margin computations, to the
point where it became an industry standard.

The only weak feature of the ES was the lack of backtesting tests, while the VaR has several robust statistical
tests such as the Kupiec and Christoffersen tests. This weakness was remedied by the recently proposed
statistical tests, starting from the work of Acerbi and Szekely [1].

We illustrate in the following graph an example of a VaR and ES computation for the Brazil Stock Market
Index (BOVESPA):
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The use of the ES allows to reduce the number of breaches from 8 to 0.
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3. Backtesting ES

The computation of the ES needs to be backtested, which means that one should check a posteriori whether
the risk prediction was correct. This check, when it leads to a negative result, is a good indicator that the ES
computation method should be revised. In the past years the backtestability of the ES has been questioned:
since Gneiting proved in 2011 ( [6]) that this risk measure lacks a property called elicitability (whereas the
pair (VaR, ES) is elicitable, [5]), some mathematicians concluded that the ES was not backtestable. However,
in 2014 Acerbi and Szekely proved in [1] that this is not the case, by simply finding some backtest statistics
for the ES. Since then, many articles regarding the backtestability of the ES have been published but a
lot of them lack of a proper definition of backtestability and, as a consequence, the tests proposed are
not theoretically rigorous. For this reason we start the current section by mathematically defining what
backtesting the ES means.

When we talk about backtesting a statistic, we refer to Definition 3.1 of [2]. In particular, we say that

Definition 3.1. The statistic ES is backtestable if there exists a backtest function Z(e, v, x) such that

• EH [Z(e, v, X)] = 0 iff e = −EH [X|X ≤ −v];

• EH [Z(e1, v, X)] < EH [Z(e2, v, X)] if e1 < e2

for a fixed v.

This means that when we underestimate the value of the ES, the sign of the backtest function will be nega-
tive on average.

With these tools, we can then define the backtest test as

Z̄(X) =
1
N

N

∑
d=1

Z(ÊSα
d , ˆVaRα

d , Xd)

where X, ÊSα and ˆVaRα are the vectors of respectively the valuations of a portfolio (e.g. PnLs), the estimated
ESs and the estimated VaRs. From the previous definition, we have that under the null hypothesis H0 :
ESα

d = ˆESα
d , it holds EH0 [Z( ˆESα, ˆVaRα, X)] = 0 while under the alternative hypothesis of underestimation

of the ES, H1 : ESα
d ≥ ˆESα

d ∀d ∧ ∃d : ESα
d > ˆESα

d , it holds

EH1 [Z( ˆESα, ˆVaRα, X)] < EH1 [Z(ESα, VaRα, X)] = 0 = EH0 [Z( ˆESα, ˆVaRα, X)]

(note that here we are supposing ˆVaRα
= VaRα but this is not needed if we ask in the definition of backtesta-

bility that EH [Z(e, v1, X)] < EH [Z(e, v2, X)] if v1 < v2 and add to the alternative hypothesis the requirement
VaRα

d ≥ ˆVaRα
d ∀d).

Then, in order to backtest the ES, one has to compute the value of Z̄(X) and compare it with a threshold
value. The latter can be chosen as the φ-quantile of the distribution of Z̄(X) under the null hypothesis and
can be empirically obtained by repeating M times the following steps:

1. Simulate a N-vector of X’s under the distribution of the null hypothesis;
2. Calculate Z̄(X) using the already computed ˆESα

d , ˆVaRα
d for d = 1, . . . , N.
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The φ-quantile can be calculated as Z̄(X)([x])+(x− [x])(Z̄(X)([x]+1)− Z̄(X)([x])) where x = φ
100 (M− 1)+ 1.

At this point, the computed value Z̄(X) is accepted iff it is greater than the threshold.

We will refer to type I and type II errors as

1. Type I error: when ÊSα is correct but it is rejected;
2. Type II error: when ÊSα underestimates the real ES but it is accepted.

In the following subsections we will discuss and compare different possible Expected Shortfall backtest
procedures. We start with the analysis of the test statistic proposed by Moldenhauer and Pitera in [7]. We
try to explain why this statistic is not strictly a proper backtest for ES, in the sense of definition 3.1, but
rather tests the distribution of the PnLs. Then, from a theoretical point of view, one should prefer Z̄2 and
the minimally biased statistic, which we denote by Z̄MB, proposed by Acerbi and Szekely in the articles [1]
and [3]. We also have a look at the so called Z̄3 statistic in [1] and see that it has the same theoretical issues
than the Moldenhauer and Pitera statistic. From a theoretical point of view, we end up by suggesting the
use of Z̄MB as its own authors do. On the other hand, we will see in the next section that from a practical
point of view the Moldenhauer and Pitera statistic is as good as Z̄MB, at least on the tests we performed.

3.1 Moldenhauer and Pitera test statistic

This test was proposed by Moldenhauer and Pitera in their article Backtesting expected shortfall: a simple
recipe? [7].

3.1.1 Theoretical presentation

Let Xd denote the random process of the valuation of a portfolio (e.g. the PnL) and let ESα
d denote the

computed Expected Shortfall value for the probability α at day d. We define the random process

Y = X + ESα

to be the secured position. Alternatively, the definition Y = X+ESα

ESα can be used. With this choice, the whole
following discussion does not change and also the paragraphs ‘Theoretical misspecification of the backtest’
and ‘How to avoid simulations’ are still valid.

The ES test statistic used by Moldenhauer and Pitera is

G(X, ESα) =
N

∑
k=1

1(Y[1]+···+Y[k]<0)

where N is the number of days in the observation window and the random process Y[d] denotes the ordered
statistic of Yd. Note that the authors define this statistic divided by N but for stability properties, we do not
do this division (see paragraph How to avoid simulations).

In order to check whether this is a good backtest for ES, we need to see what happens to the statistic when
the ES is underestimated. Suppose that the calculated value of the ES at time d is ˆESα

d . We set the null
hypothesis to be H0 : ESα

d = ˆESα
d ∀d while the alternative hypothesis will be H1 : ESα

d ≥ ˆESα
d ∀d ∧ ∃d :
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ESα
d > ˆESα

d . Note that if we use a unique method to evaluate the ES, the distributions of X are different in
the two hypothesis.

Under the alternative hypothesis note that Xd + ˆESα
d ≤ Xd + ESα

d for every d so that (Xd + ˆESα
d)(k) ≤

(Xd + ESα
d)[k] for every k and (Xd + ˆESα

d)[1] + · · ·+ (Xd + ˆESα
d)[k] ≤ (Xd + ESα

d)[1] + · · ·+ (Xd + ESα
d)[k] for

every k and the inequality is strict for some k. So

EH1 [G(X, ˆESα)] =
N

∑
k=1

PH1((Xd + ˆESα
d)[1] + · · ·+ (Xd + ˆESα

d)[k] < 0)

>
N

∑
k=1

PH1((Xd + ESα
d)[1] + · · ·+ (Xd + ESα

d)[k] < 0) = EH1 [G(X, ESα)].

What we found is that if we underestimate the ES value, the statistic G will have on average a value greater
than its true value, which depends of course also on the distribution of X. In order to find a threshold,
however, we cannot use the value EH1 [G(X, ESα)], since we do not know it. What is fundamental to
prove is rather that EH1 [G(X, ˆESα)] > EH0 [G(X, ˆESα)]. This could be done if, for example, the statistic
G is constructed in such a way that G(X, ESα) = 0 iff ESα is the true value of the ES. In this case then
EH1 [G(X, ESα)] = 0 = EH0 [G(X, ˆESα)] and the required inequality would be automatically achieved. After,
we could proceed with setting the threshold value to be the empirical φ-quantile obtained by simulations of
G(X, ˆESα). The requirement that a test statistic is null at the true value of the backtested quantity is exactly
what we have reported in the definition of backtestability.

3.1.2 Theoretical misspecification of the backtest

In Appendix I we present two counterexamples which show that from a strict theoretical prospective, the
G statistic is not the best choice for backtesting the ES, according to our definition 3.1.

In the first example, we show that EH1 [G(X, ˆESα)] > EH0 [G(X, ˆESα)] does not imply ˆESα < ESα. This
means that if we calculate the threshold as the φ-quantile of the simulated vector of G’s and then accept ˆESα

iff G(X, ˆESα) is smaller than the threshold, then we could be rejecting ˆESα even if it correctly overestimates
the real ESα. This causes an higher probability to make type I errors.

The second example proves that the very general hypothesis H1 : ESα
d ≥ ˆESα

d ∀d ∧ ∃d : ESα
d > ˆESα

d does
not imply that EH1 [G(X, ˆESα)] > EH0 [G(X, ˆESα)]. This fact could cause the error of accepting ˆESα even if it
underestimates the real ESα and so an error of type II.

These are very easy examples since we take N = 1 but even with only one variable X it is possible to show
that the statistic G does not satisfy definition 3.1 of a backtest function. Why then does it seem to work
properly in the article of Moldenhauer and Pitera? We think that rather than being a backtest for the ES,
it is a backtest for the generic distribution of the X’s, with similar hypothesis as in the paragraph ‘Acerbi
and Szekely Z̄3 statistic’. Indeed, we prove this fact in Appendix, paragraph ‘Moldenhauer and Pitera
alternative hypothesis’.

The hypothesis used do not lead to the desired result in the previous examples. Then, if we restricted
ourselves to the strict theoretical aspect, the G statistic would not be considered. On the other hand, from
a practical point of view, the PnLs’ distributions are generally approximated by Student-t, whose tails (in
particular for negative values) can be compared by stochastic dominance. In particular, if Pν1 and Pν2 are
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the distributions of two Student-t with ν1 < ν2 degrees of freedom, then Pν1 � Pν2 . This means that if we
set the degrees of freedom of the X’s distributions to be higher than in reality, the statistic G will correctly
signal it.

3.1.3 How to avoid simulations

The G statistic, whatever it backtests, is rather robust with respect to the underlying distribution for N small
enough and φ not too high and so the threshold can be simulated by standard normal distributions for the
X’s. The threshold can be calculated as follows:

1. Compute ESα for the standard normal distribution (with closed formulas);

2. Iterate M times the following steps:

a. Simulate a N-vector of X’s under the standard normal distribution;

b. Calculate G(X, ESα) using the already computed ESα.

3. Take the φ-quantile of the G(X, ESα)’s.

In particular, for α = 0.5% and φ = 95%, the threshold can be set at 6. Note that in this case, if we use a
Student-t distribution for the X’s, the result is still 6.

It must be remarked that increasing N or φ, the statistic G is not stable anymore and its threshold cannot be
approximated in this way but it must be computed as explained in the beginning of this section. Indeed,
from the following table we can see that the thresholds for G under a Student-t distribution with 5 degrees
of freedom or a standard normal distribution for the X’s can drastically change (we set α = 0.5%):

N φ(%) Normal Student-t

0 500 95.00 6 6
1 500 99.99 12 17
2 1000 95.00 10 10
3 1000 99.99 18 24
4 2000 95.00 17 18
5 2000 99.99 27 35

Table 1: Thresholds of G for α = 0.5%

3.2 Acerbi and Szekely Z̄2 statistic

This test was proposed by Acerbi and Szekely in their 2014 article Backtesting Expected Shortfall [1].

3.2.1 Theoretical presentation

Define the backtest function

Z2(e, v, x) =
x1{x+v<0}

αe
+ 1.
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Then, under the hypothesis that VaRα(X) = v and ESα(X) = e it holds E[Z2(e, v, X)] = 0. Furthermore Z2

is strictly increasing with v and with e, meaning that when E[Z2(e, v, X)] < 0, the computed VaR v and/or
the computed Expected Shortfall e underestimate the real ones.

A natural test statistic for the calculated value ˆESα can then be chosen as

Z̄2(X) =
1
N

N

∑
d=1

Z2( ˆESα
d , ˆVaRα

d , Xd).

It is easy to see that, under the null hypothesis of correctly chosen ˆESα
d , the mean value of Z̄2(X) is 0.

Otherwise, under the alternative hypothesis of underestimation of the risk

H1 :ESα
d ≥ ˆESα

d ∀d ∧ ∃d : ESα
d > ˆESα

d

VaRα
d ≥ ˆVaRα

d ∀d,

it holds EH1 [Z̄2(X)] < 0 = EH0 [Z̄2(X)].

This means that in contrast with the Moldenhauer and Pitera test, the Z̄2 statistic correctly backtests the ES,
following our definition of backtestability.

3.2.2 How to avoid simulations

For fixed α and φ, it is possible to numerically check that the thresholds for the Z̄2 statistic in case of Student-
t distributions are quite stable through the ν’s. The threshold values for α = 0.5% and φ = 5% are for
example (here we do 500000 simulations):

Threshold
ν

3 -1.3
5 -1.2
10 -1.2
100 -1.1
1000 -1.1

Table 2: Thresholds of Z̄2 for α = 0.5% and φ = 5%

It follows that for this test statistic one can take as fixed threshold a value of −1.2 avoiding to calculate it.

3.3 Acerbi and Szekely Z̄MB statistic

This test was proposed by Acerbi and Szekely in their 2017 article General properties of backtestable statistics
[2].
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3.3.1 Theoretical presentation

Following the steps for Z̄2, the authors define a different test statistic. This time the backtest function is

ZMB(e, v, x) = e− v +
(x + v)1{x+v<0}

α
.

As before, if VaRα(X) = v and ESα(X) = e, then E[ZMB(e, v, X)] = 0 and Acerbi and Szekely show in
section 4.2 of [2] that E[ZMB(e, v, X)] < 0 when the calculated Expected Shortfall e underestimates the real
one, no matter the value of v.

The corresponding test statistic for ˆESα is

Z̄MB(X) =
1
N

N

∑
d=1

ZMB( ˆESα
d , ˆVaRα

d , Xd).

Setting the less strict alternative hypothesis H1 : ESα
d ≥ ˆESα

d ∀d ∧ ∃d : ESα
d > ˆESα

d , it holds again
EH1 [Z̄MB(X)] < 0 = EH0 [Z̄MB(X)] and the ES can be backtested as in the previous example.

This statistic is preferred by Acerbi and Szekely since it presents a smaller sensitivity to VaR predictions. In
particular, the test statistic Z̄2 could face type I and type II errors with more probability than the test statistic
Z̄MB if the prediction ˆVaRα is not correct.

3.4 Acerbi and Szekely Z̄3 statistic

We now consider another statistic which does not directly backtest the computed value of the ES but which
rather backtests the distribution of the X’s used to evaluate the ES. This test was proposed by Acerbi and
Szekely in their 2014 article Backtesting Expected Shortfall [1].

3.4.1 Theoretical presentation

In particular call Pd the predicted distribution of Xd used to evaluate the VaR and the ES and call Fd the real
unknown distribution of Xd. We put

H0 :Fd = Pd ∀d

H1 :Fd � Pd ∀d ∧ ∃d : Fd ≺ Pd

where� denotes that the left side is first order stochastically dominated by the right side. This is equivalent
to say that the cdf of Fd is no smaller than the cdf of Pd at every point and that for every non-decreasing
function u it holds

∫
u(x) dFd(x) ≤

∫
u(x) dPd(x). As a consequence, both VaR and ES are underestimated

under Pd.

If the test ends up to accept the null hypothesis, then it is possible to evaluate ÊSα
d through the formula

ÊSα
d = ÊSα

M(Yd) = − 1
[Mα]

[Mα]

∑
i=1

Yd
(i)
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where M is a big number (e.g. M = N if an historical simulation is used) and Yd is an M-vector of simulated
variables distributed as Pd.

The test statistic used is

Z̄3 = − 1
N

N

∑
d=1

ÊSα
N(P−1

d (U))

EV [ÊSα
N(P−1

d (V))]
+ 1

where U is an iid N-vector such that Ud = Pd(Xd) while V is an iid N-vector of variables U([0, 1]). Denoting
a regularized incomplete beta function as Ix(a, b), the denominator can be analytically computed as

EV [ÊSα
N(P−1

d (V))] = − N
[Nα]

∫ 1

0
I1−p(N − [Nα], [Nα])P−1

d (p) dp.

This entails that EH0 [Z̄3] = 0 and EH1 [Z̄3] < 0.

This test statistic is very general and its alternative hypothesis does not directly involve the computed ES:
this means that it is not a backtest for the ES. Furthermore, it is not as straightforward as the other statistics
considered so we do not suggest its use for the precise purpose of backtesting the ES at least.

3.5 Conclusion

We can sum up the pros and cons of each test statistic:

• Moldenhauer and Pitera test statistic G:

– Pros: the threshold can be calculated taking a standard normal distribution for the X’s.
– Cons: it does not satisfy definition 3.1 of a backtest function;

• Acerbi and Szekely Z̄2:

– Pros: extremely easy to be implemented, the threshold can be calculated taking a Student-t (with
e.g. ν = 5 degrees of freedom) distribution for the X’s.

– Cons: it could face type II errors;

• Acerbi and Szekely Z̄MB:

– Pros: extremely easy to be implemented, it is very little influenced by the VaR predictions.
– Cons: the threshold must be evaluated through simulation of the X’s distribution;

• Acerbi and Szekely Z̄3:

– Pros: not many.
– Cons: it is the most difficult to be implemented, it is not a proper backtest for the ES.

The best theoretical choice is the Z̄MB statistic because it correctly tests the ES, it is very easy to be imple-
mented and it is little sensitive to VaR predictions. From the practical point of view, however, the fact that
the threshold cannot be approximated by standard distribution requires, if using a Filtered Historical Sim-
ulation method, to store all the simulation of the X’s used to compute the ES. The statistics G and Z̄2 do not
face this problem, although G lacks some theoretical justifications and it is a little bit more difficult to be
implemented, while Z̄2 is not as precise as Z̄MB in the choice of accepting or rejecting the computed ES.
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4. Quantitative assessment

4.1 Tests on simulated data

We compare here the power of the four statistics G, Z̄2, Z̄MB and Z̄3. The simulated distribution of the
PnL process are Student-t with ν degrees of freedom and the null and alternative hypothesis change for
the number of degrees of freedom of the distribution. In particular, H0 : ν = ν0 while H1 : ν = ν1. The
power of a statistic is the probability to reject the null hypothesis when indeed the alternative hypothesis
is correct. This means that the higher the power, the better is the test statistic in terms of avoiding type
II errors. To evaluate the power of the tests under an alternative hypothesis H1 which underestimates the
risk, it is necessary to have ν1 < ν0.

We can use the function power for two purposes:

1. Evaluation of the probability to commit type I errors: this error arises when the null hypothesis is
rejected even if it is true and the probability at which it arises is equal to the significance level φ. In
order to check whether the function power is correctly written, we put ν1 = ν0 and see if its value is
actually φ.

2. Evaluation of the probability to commit type II errors: this probability is the difference between 1 and
the power.

We set the level of the Expected Shortfall at α = 99.5%, the significance level of the test at φ = 5% (which
means that if the p-value is less than φ, the statistic is rejected) and the number of days in the observation
window at N = 500. To calculate the threshold level for the statistic we compute 250000 simulations while
to calculate the power, that is the rate of rejected statistics, we do 100000 simulation.

In order to use the same input data as the Acerbi and Szekely’s statistics, instead of computing the G
statistic, we calculate −G. Furthermore, as Moldenhauer and Pitera suggest, we use the relative secured
positions: Y = X+ESα

ESα .

We add also the power column for the Z̄2 statistic with a precomputed threshold equal to−1.2, calling it Z̄2

bis.

ν in H0 ν in H1 G Z̄2 Z̄MB Z̄3 Z̄2 bis

0 3 3 7.4 4.9 4.9 5.1 6.1
1 5 3 76.0 76.7 68.8 55.4 76.4
2 10 3 99.5 99.5 99.3 97.2 99.5
3 100 3 100.0 100.0 100.0 100.0 100.0
4 5 5 6.9 5.0 5.0 5.0 5.1
5 10 5 71.0 67.7 66.2 54.8 66.7
6 100 5 99.4 99.0 99.2 97.7 98.7
7 10 10 5.9 5.0 5.1 5.0 4.6
8 100 10 75.0 70.0 73.4 64.4 66.9
9 100 100 5.3 5.0 5.0 5.2 4.3

Table 3: Power of G, Z̄2, Z̄MB, Z̄3 and Z̄2 bis (%)
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We can see that G, Z̄2 and Z̄MB’s powers are definitely higher than Z̄3’s one. Also, the evaluation of the
latter statistic requires much more time than the formers, whose computation times are similar.

The computation time of Z̄2 bis is definitely lower since it does not require the calculation of the threshold.
Its power cannot actually be compared with the other statistics’ ones since it is evaluated on significance
levels which differ from 5%. In particular, the significance level is 6.1% for ν = 3, 4.5% for ν = 10 and 4.3%
for ν = 100. A higher (lower) significance level leads to a higher (lower) power so setting these levels of
significance for the other statistics would also increase (decrease) their power. For this reason we suggest
the use of a precomputed threshold statistic only in the case of very long computation times, which in these
examples do not actually arise.

This argument holds also for G, whose significance levels are somehow higher than 5% for small ν’s, which
means that the corresponding powers will also be higher. Then, the real power of G is not as high as it
seems. The reason why G faces a higher probability of type I error is explained in Example 1 of paragraph
Moldenhauer and Pitera test statistic, section 3-2.

For a matter of completeness we report in the following two tables the power of Z̄2 and Z̄MB for the actual
significance levels used by Z̄2 bis (first table) and by G (second table). We see that their power changes as
predicted.

φ Z̄2 Z̄MB Z̄2 bis

0 6.1 6.0 6.2 5.1
1 6.1 78.6 72.1 55.4
2 6.1 99.6 99.5 97.2
3 6.1 100.0 100.0 100.0
4 5.1 5.1 5.2 5.0
5 5.1 68.2 66.9 54.8
6 5.1 99.0 99.2 97.7
7 4.6 4.5 4.7 5.0
8 4.6 68.3 72.3 64.4
9 4.3 4.2 4.2 5.2

Table 4: Power of Z̄2, Z̄MB and Z̄2 bis with different φś (%)

φ Z̄2 Z̄MB G

0 7.4 7.4 7.3 7.4
1 7.4 80.8 75.0 76.0
2 7.4 99.7 99.5 99.5
3 7.4 100.0 100.0 100.0
4 6.9 6.9 6.9 6.9
5 6.9 72.6 71.2 71.0
6 6.9 99.2 99.4 99.4
7 5.9 5.9 5.8 5.9
8 5.9 72.1 75.4 75.0
9 5.3 5.2 5.2 5.3

Table 5: Power of Z̄2, Z̄MB and G with different φś (%)
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4.2 Tests on historical data

The evaluation of the ES is done as described in section 2 and as before we denote ˆESα
d its estimated value

at day d. With the notations of section 3.2, we have Xd = Pd+1 − Pd where Pd is the value of the asset at day
d. The statistic Z̄ will be evaluated on these realised values of X:

Z̄(X) =
1
N

N

∑
d=1

Z( ˆESα
d , ˆVaRα

d , Xd).

In order to calculate the threshold, it is necessary to simulate the test statistic M times and then to compare
the φ-quantile with Z̄(X). How can Z̄ be simulated if we use an historical distribution? In order to calculate

ˆESα
d through an historical method as HS or FHS, we needed to simulate M scenario of Xd for every d, taking

into account the history of X. Since we do an historical simulation, M corresponds to the number of data
available (for us, ten years so M = 2500). We can then use the same simulations to compute

Z̄k =
1
N

N

∑
d=1

Z( ˆESα
d , ˆVaRα

d , Xd,k)

for each k = 1, . . . , M and finally take the φ-quantile of the Z̄’s vector.

We now let run the G, Z̄2 and Z̄MB backtests on some portfolios on equity products obtained from Yahoo
Finance in the period from 02/12/2005 to 02/12/2020.

G Threshold Accepted

AXJO -9 -9 No
BVSP 0 -9 Yes
FCHI -3 -12 Yes
GDAXI -2 -14 Yes
GSPC -9 -11 Yes
GSPTSE -3 -14 Yes
KS11 -7 -15 Yes
MXX -8 -10 Yes
SSMI -3 -11 Yes
TWII -12 -11 No

Table 6: Accepted ES for G
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Z̄2 Threshold Accepted

AXJO -2.5397 -2.76928 Yes
BVSP -1.67839 -2.27365 Yes
FCHI -0.527363 -3.96901 Yes
GDAXI -0.458829 -4.07022 Yes
GSPC -2.1588 -2.95039 Yes
GSPTSE -0.160738 -3.80838 Yes
KS11 -1.77876 -4.18092 Yes
MXX -1.52592 -2.83534 Yes
SSMI -0.481356 -2.68431 Yes
TWII -1.39444 -3.85184 Yes

Table 7: Accepted ES for Z̄2

Z̄MB Threshold Accepted

AXJO -82.1309 -76.2563 No
BVSP -396.507 -2533.57 Yes
FCHI -15.1573 -132.957 Yes
GDAXI -5.50087 -318.857 Yes
GSPC -46.6548 -64.55 Yes
GSPTSE 4.73223 -459.015 Yes
KS11 -26.4939 -59.7472 Yes
MXX -799.427 -904.342 Yes
SSMI -15.3335 -228.596 Yes
TWII -381.284 -197.07 No

Table 8: Accepted ES for Z̄MB

It can be seen that the backtests G and Z̄MB lead to the same results. This is somehow surprising since from
the theoretical point of view we have proven that G does not satisfy theoretical conditions of definition 3.1
of a backtest function. However, our observations suggest that G is a backtest for the whole distribution of
the PnLs and so it could have the same results of a backtest for the ES, when the distributions employed for
the evaluation of the ES are misspecified.

The backtest Z̄2 accepts the estimated ES for a higher number of portfolios and if G or Z̄MB accept the ES,
then also Z̄2 does. This could be explained by Example 4.3 and Figure 5 of [2], where it is shown that when
the ES is underestimated, Z̄2 could fail to reject it causing a type II error, while this would never happen for
Z̄MB. Which of the three statistics is then right?

Let us plot the realized PnLs versus the ES estimated level for the Taiwan Weighted Index.
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From this plot, we can see that there are only three breaches but they are huge, so G and Z̄MB take into
account also the magnitude of the breaches while Z̄2 seems to slightly neglect it. Once again, we suggest
the use of the Z̄MB statistic.

4.3 Tests on historical data with approximated thresholds

We repeat the tests done in the previous session for G and Z̄2 but approximating the thresholds with pre-
computed ones. This will save a lot of memory since it does not require the storage of all the PnLs simula-
tions but it will affect the results. This time the test cannot be done with the statistic Z̄MB because it is not
stable in the distribution of the underlying. We stress the fact that this approximation can be done on G
when N is not too large and φ is not too small.

For G we precompute the threshold with standard normal distributions or, equivalently, with Student-t
distributions for the PnLs. Setting α = 99.5% and φ = 5%, we find that the threshold value is −6. For Z̄2

we use a Student-t with 5 degrees of freedom distributions. In this case the threshold is −1.2.
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G Threshold Accepted

AXJO -9 -6 No
BVSP 0 -6 Yes
FCHI -3 -6 Yes
GDAXI -2 -6 Yes
GSPC -9 -6 No
GSPTSE -3 -6 Yes
KS11 -7 -6 No
MXX -8 -6 No
SSMI -3 -6 Yes
TWII -12 -6 No

Table 9: Accepted ES for G

Z̄2 Threshold Accepted

AXJO -2.5397 -1.2 No
BVSP -1.67839 -1.2 No
FCHI -0.527363 -1.2 Yes
GDAXI -0.458829 -1.2 Yes
GSPC -2.1588 -1.2 No
GSPTSE -0.160738 -1.2 Yes
KS11 -1.77876 -1.2 No
MXX -1.52592 -1.2 No
SSMI -0.481356 -1.2 Yes
TWII -1.39444 -1.2 No

Table 10: Accepted ES for Z̄2

Of course, the values of the statistics are the same as in the previous tests but the output results regarding
the acceptance of the ES are different. We can see that in this case, both statistics become more conservative
and that Z̄2 seems more conservative than G, because the calculated ES for the Brazil Stock Market Index is
accepted by G and rejected by Z̄2. However, we can see from the following graph that there are no breaches
in the portfolio.
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The reason why Z̄2 rejects the computed ES is that this statistic is very sensitive to VaR misspecifications.
Since the number of breaches for the computed VaR amounts to 8, then there is a rejection, even if there
should not be. Then G gives better results regarding the acceptance of ÊSα.

4.4 Conclusion

To sum up, we found that the best statistic from the theoretical and numeric point of view is Z̄MB since
it is the most conservative one as it correctly accepts or rejects the computed values of ES and it is not
influenced by VaR misspecifications. However, the evaluation of the threshold requires the storage of the
historical simulations used to calculate the ES and this slows down computations. The time required for the
evaluation of the threshold is in any case of some seconds so the additional storage is not computationally
demanding.

If one prefers not having to deal with the storage of the PnLs simulations, both the Z̄2 and G statistics can
be used. From a practical point of view, G gives better results (the same results as Z̄MB) on the portfolios
that we tested, although it lacks some theoretical justifications.
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5. Appendix I

5.1 Moldenhauer and Pitera counterexamples

5.1.1 Example 1: EH1 [G(X, ˆESα)] > EH0 [G(X, ˆESα)] does not imply ÊSα
< ESα

In this example we will prove that EH1 [G(X, ˆESα)] > EH0 [G(X, ˆESα)] does not imply that we are underes-
timating the ES or in other words that ˆESα < ESα.

Consider in particular a toy example with N = 1. In the following we plot the pdf of the unique X under
the null hypothesis, denoted by fH0 , and under the alternative hypothesis, denoted by fH1 . We consider
only the part regarding extreme losses of X, the distribution for X > v can be arbitrarily chosen.

Then the VaRs under H0 and H1 are both equal to v. The ES under H0 is

ÊSα
= −

a
ε

x2

2

∣∣∣−x

−x−ε
+ α−a

ε
x2

2

∣∣∣−v

−v−ε

α
=

α
2 ε + (ax + (α− a)v)

α

and similarly the ES under H1 is

ESα =
α
2 ε + (by + (α− b)v)

α
.

Note that ÊSα
> v iff α

2 ε + (ax + (α− a)v) > αv iff α
2 ε + a(x− v) > 0 which holds true.
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Set ε < 2a(α−b)
αb (x − v). We have ÊSα

< x iff α
2 ε + (ax + (α − a)v) < αx iff ε < 2(α−a)

α (x − v) and this is
true for the chosen ε since a < b. We can then choose y = ÊSα. In this way ÊSα

> ESα, iff ax + (α− a)v >
b
α (

α
2 ε + (ax + (α− a)v)) + (α− b)v iff a(α− b)(x− v) > αb

2 ε which is true for the chosen ε.

This means that ESα < ÊSα so that we are overestimating the real ES. Let us see what happens to the statitic
G = 1X+ESα<0. We have, EH1 [G(X, ˆESα)] = PH1(X + ˆESα < 0) = b while EH0 [G(X, ˆESα)] = PH0(X + ˆESα <

0) = a so EH1 [G(X, ˆESα)] > EH0 [G(X, ˆESα)], even if we are overestimating the ES.

5.1.2 Example 2: ˆESα < ESα does not imply EH1 [G(X, ˆESα)] > EH0 [G(X, ˆESα)]

On the other hand, we can construct an example which shows that the very general hyphothesis H1 : ESα
d ≥

ˆESα
d ∀d ∧ ∃d : ESα

d > ˆESα
d does not imply that EH1 [G(X, ˆESα)] > EH0 [G(X, ˆESα)].

As before, we take N = 1 and we plot the tail pdfs under the null and the alternative hypothesis:

As before, we have ÊSα
=

α
2 ε+(ax+(α−a)v)

α and ESα =
α
2 ε+(by+(α−b)v)

α . For ε < 2b(α−b)
αa (y − v), it holds

v < ESα < y so we can set x = ESα. In this way it can be shown that ÊSα
< ESα and EH1 [G(X, ˆESα)] <

EH0 [G(X, ˆESα)], which was our aim.
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5.2 Moldenhauer and Pitera alternative hypothesis

For the G statistic, let us consider the same hypothesis used for Z̄3, which are:

H0 :Fd = Pd ∀d

H1 :Fd � Pd ∀d ∧ ∃d : Fd ≺ Pd

where Pd is the predicted distribution of Xd used to evaluate the ES and Fd is the real unknown distribution
of Xd. In particular, for every non-increasing function u, we have EPd [u(Xd)] ≤ EFd [u(Xd)].

Let us consider the function 1
((X+ÊSα

)[1]+···+(X+ÊSα
)[k]<0). We prove that it is non-increasing as a function

of each Xi. We have that the function Y → 1(Y<0) is non-increasing. Call f the function f (Xi) = (X +

ÊSα
)[1] + · · ·+ (X + ÊSα

)[k] where Xd is fixed for d 6= i. Then, it is enough to prove that f is increasing or
equivalently that f (Xi) < f (Xi + ∆Xi) for every ∆Xi). Let us suppose to increase Xi to Xi + ∆Xi. It follows
that

• if Xi + ÊSα
i ≤ (X + ÊSα

)[k] and Xi + ∆Xi + ÊSα
i ≤ (X + ÊSα

)[k+1], then f (Xi + ∆Xi) = f (Xi) + ∆Xi >

f (Xi);
• if Xi + ÊSα

i ≤ (X + ÊSα
)[k] and Xi + ∆Xi + ÊSα

i > (X + ÊSα
)[k+1], then f (Xi + ∆Xi) = f (Xi)− (Xi +

ÊSα
i ) + (X + ÊSα

)[k+1] > f (Xi) since Xi + ÊSα
i < (X + ÊSα

)[k+1];
• if Xi + ÊSα

i > (X + ÊSα
)[k], then also Xi + ∆Xi + ÊSα

i > (X + ÊSα
)[k] and f (Xi + ∆Xi) = f (Xi).

So f is an increasing function and Xi → 1( f (Xi)<0) is decreasing for every i = 1, . . . , N. We also recall that
the expected value of a decreasing function is still a decreasing function.

Applying Fubini’s Theorem and sequentially using the fact that Fd � Pd, we have

EH0 [1((X+ÊSα
)[1]+···+(X+ÊSα

)[k]<0)] = EP1 [EP2 [. . . EPN [1((X+ÊSα
)[1]+···+(X+ÊSα

)[k]<0)]]]

≤ EF1 [EF2 [. . . EFN [1((X+ÊSα
)[1]+···+(X+ÊSα

)[k]<0)]]]

= EH1 [1((X+ÊSα
)[1]+···+(X+ÊSα

)[k]<0)].

From this, it follows that EH0 [G(X, ˆESα)] < EH1 [G(X, ˆESα)] where the inequality is strict since Fd ≺ Pd for
some d.
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