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Abstract

Central clearing counterparty houses (CCPs) play a fundamental role in mitigating the counterparty

risk for exchange traded options. CCPs cover for possible losses during the liquidation of a defaulting

member's portfolio by collecting initial margins from their members. In this article we analyze the

current state of the art in the industry for computing initial margins for options, whose core component

is generally based on a VaR or Expected Shortfall risk measure. We derive an approximation formula for

the VaR at short horizons in a model-free setting. This innovating formula has promising features and

behaves in a much more satisfactory way than the classical Filtered Historical Simulation-based VaR in

our numerical experiments. In addition, we consider the neural-SDE model for normalized call prices

proposed by [Cohen et al., arXiv:2202.07148, 2022] and obtain a quasi-explicit formula for the VaR and

a closed formula for the short term VaR in this model, due to its conditional a�ne structure.
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1. Introduction

The counterparty risk for exchange traded options is generally mitigated thanks to Central Clearing Coun-

terparty houses (CCPs), which take the role of counterparty for option positions: the CCP becomes the

seller in front of the buyer and the buyer in front of the seller. In case of a clearing member default, the

CCP replaces the defaulting member until its option positions are distributed among the surviving members

through a liquidation of the portfolio performed through brokers and/or through an auction. The 2008

�nancial crisis entailed a strengthening of the regulations for CCPs, requiring very robust risk frameworks

in order to achieve the task of covering potential losses incurred by a default situation. As an example, the

EMIR regulation lists the principles that a CCP must adopt to safely operate. In particular, in order to

cover for the possible losses due to the liquidation of the defaulting member's portfolio, the CCP requires

from its members to deposit collateral in form of initial margin, additional margins to cover liquidity and

concentration and/or speci�c risks, and default fund contribution.

We concentrate on the initial margin, which is supposed to cover for the losses incurred in case of the

liquidation of a given portfolio in normal market conditions. Article 41 of [9] requires CCPs to collect

margins from the parties entering a transaction in a measure to be su�cient to cover the CCP potential

exposures while liquidating the position. The margin must also be su�cient to cover at least 99.5% of these

exposures in the case of OTC derivatives, and 99% for other �nancial products over the Margin Period Of

Risk (MPOR), as recommended in article 24 of [10].

Since the drafting of EMIR regulation, CCPs have put in practice di�erent ways to compute margins for

option portfolios. A �rst notorious methodology for complex portfolios is the SPAN algorithm of CME Group,

which simulates joint risk scenarios for the underlier and the implied volatility and infers a conservative

margin from these scenarios. However, this methodology has been overcome by more re�ned ones, which in

most cases apply a Filtered Historical Simulation (FHS)-type algorithm [2] to selected risk factors in order

to generate scenarios consistent with historical moves (examples are the SPAN2 by CME and the IRM2

by ICE). FHS is widely used among CCPs but its use on option markets is tricky and questionable. In

particular, a straightforward use of FHS breaks the structural relationships between risk factors, possibly

generating highly implausible scenarios.

Di�erent techniques rather than FHS for options margining have been studied in theory and eventually

implemented, as the procyclicality control model by Wong and Zhang from OCC [17], which relies on a

dynamic scaling factor adjusting the dynamics of the ATM IV log returns to be higher during low-volatility

periods and lower during high-volatility periods. More academic papers such as [7, 11] also look at the

issue of computing option initial margins, additionally ensuring the absence of arbitrage for the generated

scenarios. Indeed, in [11] the authors describe a generic algorithm which penalizes arbitrageable scenarios (in

a static sense) which can be simply upgraded to any scenarios generation algorithm already in production.

In particular, the authors apply it to Generative Adversarial Networks to simulate arbitrage-free implied

volatility surfaces. In [7], an a�ne factor model for normalized call option prices is �rstly de�ned and

then calibrated minimizing dynamic and static arbitrages. Scenarios are subsequently generated by neural

networks which constrain the paths to live in the polytope de�ned by the no static arbitrage conditions. In

this panorama, it is worth including the works by Bergeron at al. [4, 16] on the Variational Autoencoders

used to reconstruct missing data on implied volatility surface (eventually with no arbitrage), and which can

be tweaked to simulate scenarios based on historical movements.
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In the present work we have two main objectives: the �rst one is to provide a practical and concrete

panorama in options margining; the second, more ambitious, is to design a closed formula for the VaR of

option portfolios, which is easy to understand and to implement. Speci�cally, we compute a short-term VaR

formula which is completely model-free and coincide with the exact one in the Stochastic Volatility model

and the particular a�ne factor model for normalized call prices proposed in [7] as the neural-SDE model.

For the latter model, we show that it is actually possible to directly infer the VaR formula without any

need of simulating scenarios, so that once the parameters of the model are calibrated, these can be plugged

into a quasi-explicit formula to obtain the required margin. Also, considering the limit for small time steps,

the formula becomes closed and it has the same form of our short-term model-free formula. Testing the

short-term model-free formula, we obtain well-behaved margins which actually beat the classic FHS ones

in terms of regularity and adaptation to the market current behavior. For these reasons, we believe that

the suggested short-term model-free formula could lay the foundations to a practical model-free formula for

options margining.

In the �rst part of this paper, we look at the mechanism of options' initial margin adopted by CCPs in

section 2. In section 3 we go into detail in the practical implementations used by CCPs to calculate initial

margins, followed by an assessment of their pros and cons. In the second part of the paper, we �rstly describe

the short-term model-free formula in section 4 and secondly derive the closed margin formula in the neural-

SDE model for normalized option prices in section 5. We conclude by performing numerical experiments in

section 6.
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2. The mechanism of initial margin for

options

CCPs charge clearing members, on a daily or intra-daily basis, with total risk requirements that are computed

from initial margins. The initial margin aims at covering possible losses in the portfolio value when liquidating

it after a default, under normal market conditions, and it is estimated considering a tail risk.

Consider a portfolio, at time t, with possibly both long (Li)i and short (Sj)j option positions (both Li and

Sj are positive) with di�erent strikes and expiries. In the case of default at time t, the CCP has to liquidate

the portfolio in a Margin Period of Risk (MPOR) of say h days (h is usually 2 days for exchange-traded

options). At date t + h, the portfolio could have undergone market movements, so that the CCP has to

estimate its payo� after liquidation.

The initial margin (IM) is then the Value-at-Risk (VaR) or Expected-Shortfall (ES) at a con�dence level of

generally 0.99 of the portfolio predicted P&Ls:

IM(t) = −VaR0.99

(
P&L(t+ h)

)
where the minus sign ensures a positive margin value.

At this point, the total risk requirement charged by the CCP does not solely include the initial margin.

Indeed, the CCP eventually adds to the latter quantity some add-ons to take into account risks that are not

directly related to market moves. Among these, we typically �nd the Wrong Way Risk add-on, the liquidity

and concentration risk add-on and possibly other speci�c add-ons:

Total margin(t) = IM(t) +Add-ons(t).

Now, the total margin is �oored by the Short Option Minimum (SOM). Deep short OTM positions have

very little risk since they will probably stay OTM along the MPOR. However, their extreme risk is still not 0

and the methodology should be able to capture it. This is generally not the case for strikes very far from the

ATM, because of the lack of historical liquid data on these strikes. Then, to assure an enough conservative

margin, a secure �oor should be applied to the risk requirement. The SOM is generally the sum along all

short positions of the calibrated extreme costs for these options:

Re�ned total margin(t) = max
(
Total margin(t); SOM(t)

)
.

At this point, the �nal total risk requirement is the re�ned total margin adjusted by two other terms: minus

the Net Option Value (NOV) on equity-style options (options for which the premium is paid in full at the

settlement date, i.e. one or two days after the option trade) and the Unpaid Premium (UP), described below:

Total risk requirement(t) = max
(
Re�ned total margin(t)−NOV(t) +UP(t); 0

)
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where the �oor by zero is to avoid that the CCP pays and

NOV(t) =
∑
i

LiOi(t)−
∑
j

SjOj(t)

UP(t) =
∑

i unpaid

LiOi(t)−
∑

j undelivered

SjOj(t)

with O denoting the option prices.

For the NOV, let us consider for instance the case of a short option position, where the option is of equity-

style. In the case of a default, the liquidation of this position would require to buy the option in the market,

which amounts to the CCP paying the option price at the time of liquidation. This means that the initial

margin for a short option position should aim to cover the largest option price, up to a �xed con�dence level.

On the other hand, the liquidation of a long option position will always result in a positive in�ow for the

CCP, because the CCP will sell the long option position and receive the option price.

The reason why the CCP applies the NOV can alternatively be explained observing that the liquidation at

the end of the MPOR, at time t+ h, will result for the CCP in the monetary �ow:

Liquidation P&L(t+ h) =
∑
i

LiOi(t+ h)−
∑
j

SjOj(t+ h).

The Liquidation P&L can be expressed as the sum of the NOV and the portfolio's value increment:

Liquidation P&L(t+ h) =
(∑

i

LiOi(t)−
∑
j

SjOj(t)
)
+

+
(∑

i

Li

(
Oi(t+ h)−Oi(t)

)
−
∑
j

Sj

(
Oj(t+ h)−Oj(t)

))
= NOV(t) + P&L(t+ h).

Then, the CCP has to charge to the clearing member minus the liquidation pro�t, i.e. the predicted losses

(the initial margin appropriately adjusted by the add-ons and the SOM) minus the NOV on equity-style

options.

The UP is charged by the CCP to cover from the risk of default of the counterparts before the settlement

date of the option premium, and it corresponds to the net position of accrued option premiums which are

still unpaid (because the settlement date has not passed yet). In this way, the di�erence between the UP

and the NOV can be seen as a (Contingent) Variation Margin for Options (VMO) not yet settled.

Consider a defaulting clearing member which is long an option before the settlement date. The CCP will

need to pay the premium to its counterpart in the trade, and this will be done re-selling the option and

collecting its new premium, and using the VMO previously required to the buyer. This latter component

is needed to account for the di�erence between the initially established option premium and today's one.

Similarly, the CCP has to liquidate defaulting short positions on not yet settled options buying the option

and delivering it to the buyer counterpart. To do so, it will use the money from the buyer plus the VMO

from the defaulting seller.

All in all, the �nal formula for the total risk requirement is

Total risk requirement(t) = max
(
max

(
IM(t) +Add-ons(t); SOM(t)

)
−NOV(t) +UP(t); 0

)
.
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In this article we will focus on the IM component of the total risk requirement.
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3. Initial margin for options in the in-

dustry: a short survey

The total risk requirement mechanism and its di�erent layers is essentially the same across all CCPs, with

possible di�erences in wording. What really makes the di�erence among CCPs' requirements is the way the

IMs (and the add-ons) are computed. A notorious parametric model for margining has been proposed by

CME Group under the name of SPAN.1 It consists in computing the P&Ls of the portfolio under di�erent

risk scenarios depending on the combination of underlying price changes and implied volatility changes. A

similar model has been implemented by ICE with the name of IRM. These models are particularly tricky

and overconservative, and for these reasons nowadays CCPs are passing to new models. In particular, both

SPAN and IRM models have been upgraded to the corresponding SPAN22 and IRM23 models, which both

use the Filtered Historical Simulation (FHS) techniques to create risk scenarios. Indeed, the majority of

CCPs is now adopting the FHS to compute IMs for option portfolios.

3.1 Filtered Historical Simulation

The FHS has recently become the standard approach for VaR computations among CCPs, especially on cash

equity markets. The FHS technique is indeed particularly e�cient in cash equity and �xed income markets

for spot instruments, but it becomes more subtle in derivatives clearing.

The FHS model is particularly appreciated since it is essentially data-driven and model-free, and it relies on

few requirements to be satis�ed. For a given instrument to be cleared, �rstly the CCP must choose the risk

factors which drive its price; let rs denote their returns, either logarithmic, absolute, or relative depending

on the risk factor. A key property that scaled returns must satisfy is stationarity (see [1]). Indeed, the FHS

model relies on the hypothesis that risk factors' returns at tomorrow's date t+ 1 behave as

rt+1 = ησt+1

where σt+1 is the returns' simulated conditional volatility at day t + 1 and η is drawn from the historical

observations

ηs =
rs
σs

.

In other words, the past historical return is re-contextualized to the current volatility context by the FHS

devoling/revoling steps.

Generally, the industry standard is to use an Exponentially Weighted Moving Average (EWMA) variance

estimator for the volatility. A EWMA volatility with decay factor λ is computed as

EWMAs =
√
(1− λ)(rs)2 + λEWMA2

s−1,

1https://www.cmegroup.com/clearing/risk-management/span-overview.html
2https://www.cmegroup.com/clearing/risk-management/span-overview/span-2-methodology.html
3https://www.theice.com/clearing/margin-models/irm-2/methodology
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with an eventual �ooring in case of too low values. Then, the historical volatility σs used to scale historical

returns can be calculated with two possible formulations: σs = EWMAs and σs = EWMAs−1 respectively.

The two alternatives are discussed in [14], section 7.1, where it is acknowledged that they will lead to

signi�cantly di�erent outcomes.

When computing the IM for portfolios of options using the FHS methodology, the CCP has to choose a set

of risk factors, assessing the stationarity property in particular. Together with the underlying value (and

possibly the interest/repo rate), also the Implied Volatility (IV) has to be taken as a risk factor. Since the

IV is actually a surface which behaves di�erently depending on the strike and the maturity of the option,

two alternatives can be considered in order to generate IV scenarios:

1. Identify a �xed two-dimensional grid for the IV surface and de�ne each point as a risk factor.

2. Choose a model for option prices and take its parameters as risk factors.

For deeper insights on the VaR computation for options in a FHS approach see [13].

3.1.1 Implied Volatility anchor points

In the �rst alternative, the anchor points on the grid can be chosen with �xed time-to-maturity or �xed

rolling index as �rst coordinate, and �xed log-forward moneyness, or �xed delta, or (equivalently) �xed ratio

between log-forward moneyness and square-root of time-to-maturity as second coordinate. Since market data

is more dense around the ATM point for shortest maturities and spreads out for increasing maturities, the

�xed delta grid is generally preferred. Indeed, it implies a grid in log-forward moneyness with a triangular

shape, with a range that starts from the ATM point and spreads out as the time-to-maturity increases.

If choosing a dense grid guarantees a more precise �t of IVs in between the anchor points, it highly decreases

computation performances and makes it di�cult to identify general historical patterns in the IV surface

dynamics. For this reason, Principal Component Analysis (PCA) can be performed in order to model the

shifts of the surface. To cite an example, in [18], the authors test the FHS method on the (PCA) principal

components in a Karhunen-Loève decomposition and �nd that scenarios satisfy the conditions of no butter�y

arbitrage (i.e. the requirement that for a �xed maturity, call prices must be non-increasing and convex with

respect to the strike).

Once scenarios are generated on the anchor points, the model still needs an interpolation/extrapolation

criterion to predict future prices on points outside the grid. The criterion could be either a model for the

implied volatility (such as SVI) or for prices (such as SABR), which has to be calibrated from the scenarios

grid, or classic interpolations via b-splines. The choice can be driven by arguments of non-arbitrability of

prices, or of best �t and computation e�ciency of the algorithm.

3.1.2 Implied Volatility models

In the second alternative, the CCP chooses a pricing model for options and, once the stationarity property

on the model parameters' returns is veri�ed, performs an FHS on the model parameters.

As an example, the SABR model is an industry standard and it is driven by three parameters α, β and

ρ. Generally, the β parameter is �xed a priori based on historical observations, so that only the α and ρ
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parameters need to be estimated. After showing the stationarity of their returns in the target market, the

CCP can apply the FHS technique on the historical observations of α and ρ, and use their drawn values to

simulate future prices.

Similarly, the Stochastic Volatility Inspired (SVI) model by Gatheral is largely used among CCPs, and also

among crypto funds, to model the implied total variance. Its sub-model Slices SVI (SSVI) is sometimes

preferred since it has more tractable arbitrage-free requirements and since it still �ts data pretty well. SSVI

has three parameters θ, φ and ρ per each maturity, so that if the stationarity of their returns is veri�ed,

the FHS technique can be applied to obtain simulated prices. An example of this application can be found

in [13].

Lastly, a model which is sometimes considered is the Gaussian lognormal mixture model as described by

Glasserman and Pirjol in [12]. It consists in a convex combination of Black-Scholes prices and the number of

parameters depends on chosen number of basis prices. Even though it is easy to implement, it guarantees no

arbitrage for slices and it has very good �tting ability, the model is not easy to extend to full surfaces and it

hides potential issues when extrapolating in extreme events. Indeed, one it has the theoretical property to

have the same constant asymptotic level in the two wings of the smile (Proposition 5.1 of [12]), so that while

the calibration of market smiles could suggest a decreasing shape, the calibrated smile with a lognormal

Gaussian mixtures would necessarily increase at large strikes, a pure model artefact. As a consequence,

while calibration �t could be good for liquid market data (concentrated around the ATM point), in contexts

such as the computation of tail risks as in margins, the extrapolation at extreme strikes would be misleading

in those circumstances.

3.1.3 Limitations of the FHS

The FHS technique works well when a large history of risk factors is stored, which is in fact a �rst immediate

practical limitation. Indeed, the possible number of scenarios for the FHS cannot be larger than the available

history, since the normalized returns are drawn from past observations.

A second important drawback of the FHS methodology for complex products is the capture of the joint

dynamics of risk factors. Indeed, in the FHS model, risk factors are re-scaled according to their own

intrinsic volatility, without any reference to other risk factors and this may cause a discrepancy in the

relationships between the risk factors, and in particular in their correlations, as explained in section 7.2

of [14]. Furthermore, while the property of stationarity of the normalized returns of single assets is generally

historically satis�ed, this is more hardly the case for the returns of IV points, resulting in more unstable and

unnatural results for the FHS methodology.

Thirdly, FHS is relatively straightforward to implement, as far as the risk factors under study do not have

structural relationships which could be destroyed by the core FHS algorithm. Unfortunately, this is exactly

the case for futures' curves and implied volatility surfaces.

Indeed, in the case of futures' curves, the FHS simulation considers a set of �xed pillars (i.e. futures' time-

to-maturities) of the curves today and apply the re-scaled corresponding past returns. For each simulation,

the simulated vector of futures values on the �xed pillars should be consistent between the spot returns and

the future returns. However, this consistency is not guaranteed by the FHS simulations.

Similarly, when using the IV anchor points as risk factors, even if the calibrated volatility surfaces are

perfectly calibrated and arbitrage-free, the volatility surfaces obtained by an FHS procedure have no reason
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to be arbitrage-free in turn (and in general will not be, because arbitrage-free surfaces do not have nice

additive or multiplicative properties). Furthermore, IV anchor points returns are generally considered in

absolute terms, which could cause negative simulated implied volatilities. Flooring the latter quantities to

0 is not a good choice, since: 1) prices for zero volatility are always strictly lower than the market prices

for European options; 2) since call option prices are decreasing functions of the strike, a zero volatility for

an OTM call implies that all the calls with the same maturity and larger strikes should also have a zero

volatility, so that also simulated implied volatility smiles should satisfy this property.

The possibility of generating scenarios such that each matrix of prices indexed by the moneyness and time-

to-maturity grid is arbitrage-free is essentially an open question. A recent article [11] describes a weighted

Monte-Carlo algorithm which penalizes arbitrageable scenarios to obtain arbitrage-free simulations with

higher probability. We explain the model in section 3.3. Another alternative is to use parametric models of

IV surfaces, for which no-arbitrage conditions are available, and work at the level of the parameters of such

models. Yet, randomizing the model parameters may produce a lot of instability. A noteworthy attempt is

the neural-SDE model of [7], that we investigate further below, which provides a consistent framework for

this purpose.

Finally, the FHS methodology is known to be procyclical as shown for example in section 6 of [14]. Procycli-

cality has to be avoided because it implies margins which react too abruptly to market changes, and this

may cause liquidity issues to the clearing members who have to post the corresponding collateral.

3.2 The procyclicality control by Wong and Zhang (Op-

tions Clearing Corporation)

Even though the FHS model is the most popular among CCPS, in the recent years some new models for

the options clearing are born and CCPs are starting to look at these alternatives. An important feature in

margin requirements that CCPs should always try to mitigate is procyclicality and we have seen that FHS

does not properly satisfy this requirement. The EMIR Regulatory Technical Standards of 2013 dedicates

Article 28 to the procyclicality control, detailing speci�c actions that CCPs have to adopt for its limitation.

With this in mind, Wong and Zhang from the Options Clearing Corporation (OCC) choose a model for

options initial margin (see [17]) that guarantees to control procyclicality thanks to a dynamic scaling factor

that behaves as an inverted S-curve and is higher during low-volatility periods and lower during high-volatility

ones.

The model speci�es the log-returns of the ATM IV at expiry Tj by

log
σt+h(Tj , Ft(Tj))

σt(Tj , Ft(Tj))
:= ηt

(Tj

T1

)−α√
hzt (1)

where zt is a normalized innovation, centered with unit variance, Ft(Tj) is today's forward for maturity

Tj , and T1 is the �rst quoted expiry. The factor ηt in turn is a dynamic rescaling of the CBOE VVIXSM

(VVIX), in particular

ηt = D(σt)VVIXt

where σt is the S&P500 ATM IV of the short-term expiry (or any reference expiry, like the one-month), and
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the scaling factor D(σt) is a sigmoid function, which models a state transition from a risk point of view:

D(σt) = L+
H

1 + exp (κ(σt − σ∗))
.

Here L is the minimum of the ratio between the long-term mean of the historical vol-of-vol and the VVIX,

H is the di�erence between the maximum and the minimum of the latter ratio, κ is the growth rate of the

curve, and σ∗ is the sigmoid's midpoint.

The IV surface is recovered from the ATM IV dynamics considering the second order approximation in

log K
Ft(T ) :

σt(T,K) ≈ σt(T, Ft(T )) + Σt(T ) log
K

Ft(T )
+ Ct(T )

(
log

K

Ft(T )

)2
,

where Σt(T ) and Ct(T ) are respectively the ATM skew and the ATM curvature.

In this way, knowing the distribution of zt allows to perform simulations of implied volatility surfaces and

to compute an empirical VaR.

Observe that the dynamics of the implied volatility in eq. (1) are modeled for �xed strike and expiry, i.e. for

a �xed contract. This di�ers with the majority of other models, whose dynamics are de�ned for �xed

time-to-maturity and log-forward moneyness.

3.3 Arbitrage-free simulations for options

When computing an IM, the priority of the CCP is to be conservative enough to cover for members' defaults,

while not requiring too high margins to keep its competitiveness in the market and avoiding procyclicality.

For this reason, arbitrage-free requirements are not necessarily taken into account as seen for the FHS

methodology. However, simulating reliable scenarios (and so scenarios with no arbitrage) allows to estimate

more plausible margins, and avoids the pitfall of paying for implausible scenarios.

The article [11] describes a cunning way to compute an empirical VaR tweaking the simulations from any

model in favor of arbitrage-free simulations. The arbitrage considered in the article is the static arbitrage,

that, in case of options, can arise in both the direction of time-to-maturity and the direction of log-forward

moneyness. Arbitrage-free call prices should:

1. lie between the discounted intrinsic value (computed with respect to the forward) and the discounted

forward;

2. increase in time-to-maturity at a �xed moneyness;

3. decrease in log-forward moneyness at a �xed time-to-maturity;

4. be a convex function of the log-forward moneyness.

Note that in the article, the authors only address the last three points, but the methodology can be easily

extended to include the �rst one.

Per each arbitrage situation, a penalization function is de�ned, depending only on the normalized call prices

surface on a �xed time-to-maturity and log-forward moneyness discrete grid. Penalization functions are

null in case of no arbitrage and increase their value with increasing arbitrageable grid points. The target
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arbitrage penalty function is the sum of the three penalization functions, and it is null if and only if the

discrete call prices are free of arbitrage.

At this point, the VaR calculation algorithm is straightforward:

1. Simulate scenarios using the chosen initial model.

2. Per each simulated scenario:

� evaluate the arbitrage penalty function;

� compute its weight inversely proportional to the arbitrage penalty function.

3. Compute empirical VaR under the probability measure resulting from weights.

Since weights prioritize arbitrage-free scenarios, the VaR calculation hangs towards more reliable and possible

values.

The methodology holds for any model that simulates scenarios. It can then be applied to both FHS and

Monte-Carlo simulation models. In particular, the authors apply it to a non-parametric generative model

for implied volatility surfaces called VolGAN (section 6 of [11]).

3.4 The neural-SDE model

In [8], Cohen at al. show very good empirical results on options' VaR estimation. The results are based on a

speci�c model that the authors introduce in [7], which consists in a representation of normalized call prices via

non-random linear functions of some risk factors ξt. The articles focus on how to calibrate and consequently

generate arbitrage-free call prices surfaces via neural networks for the dynamics under consideration.

In the neural-SDE model, the normalized call prices (i.e. call prices divided by the forward and discount

factor) are a�nely decomposed into time-independent non-random surfacesGi and time-dependent stochastic

combining factors ξt,i ∈ Rd:

ct(τ, k) = G0(τ, k) +G(τ, k) · ξt

= G0(τ, k) +

d∑
i=1

Gi(τ, k)ξt,i
(2)

where τ is the time-to-maturity and k is the log-forward moneyness. The underlying asset St and the

time-dependent vector ξt evolve as

dSt = α(ξt)Stdt+ β(ξt)StdW0,t S0 = s0 ∈ R,

dξt = µ(ξt)dt+ σ(ξt) · dWt ξ0 = ζ0 ∈ Rd,
(3)

where W0 ∈ R, W = (W1, . . . ,Wd)
T ∈ Rd are independent standard Brownian motions under real-world

measure P, and the hypothesis for the existence and uniqueness of the processes hold, i.e. α(ξt) ∈ L1
loc(R),

µ(ξt) ∈ L1
loc(Rd), β(ξt) ∈ L2

loc(R), σ(ξt) ∈ L2
loc(Rd×d).

Starting from these assumptions, the factors are decoded using di�erent PCA-based techniques to also ensure

that the reconstructed prices are more likely to be arbitrage-free both in a static and in a dynamic sense.

Absence of dynamical arbitrage is ensured through Heath-Jarrow-Morton-type conditions while absence of

static arbitrage is ensured by imposing that each discretized normalized call prices' surface respects a set of
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linear conditions Ac ≥ b for some matrix A and vector b (see [6]). Notice that since the decomposition of

the normalized call prices is a�ne and the no static arbitrage conditions are linear, it is possible to rewrite

the latter conditions for ξt as A ·G · ξt ≥ b−A ·G0.

Given the history of market call prices, the factors Gi can be calibrated for every grid point (τj , kj) and

factors ξs,i for every past day s under the no arbitrage constraints.

After the factors decoding, Cohen at al. set up a supervised learning process to estimate

α(ξt), β(ξt), µ(ξt), σ(ξt) via a maximal likelihood function which ensures that the time series for ξt evolves

inside the convex polytope generated by the no static arbitrage conditions.

3.4.1 Empirical VaR in the neural-SDE model

Suppose we want to compute the VaR of a portfolio constituted of call options at MPOR date t+ h, where

h = nδt and δt is the one day unit.

Having the drift and di�usion functions for the time series of ξt and the underlier from the model calibration,

predictions can be made with an Euler scheme in a Monte-Carlo fashion. In particular (with an abuse of

notation), processes values for the �rst step at t+ δt are

St+δt = St exp

((
αt −

β2
t

2

)
δt+ βt(W0,t+δt −W0,t)

)
,

ξt+δt = ξt + µtδt+ σt(Wt+δt −Wt),

where

W0,t+δt −W0,t =
√
δtX0,

Wt+δt −Wt =
√
δtX,

with independent standard Gaussian random variables X0 ∈ R, X ∈ Rd.

In order to guarantee more stability of simulations, a tamed Euler scheme can also be implemented.

The following steps are performed as above, using the latest values of S and ξ. At each step, new parameters

α, β, µ and σ can be estimated using the neural network algorithm implemented in [7].

Alternatively, assuming α, β, µ and σ to be constant between t and t + h = t + nδt, simulations for St+h

and ξt+h can be faster computed as

St+h = St exp

((
αt −

β2
t

2

)
h+ βt(W0,t+h −W0,t)

)
,

ξt+h = ξt + µth+ σt(Wt+h −Wt).

(4)

The predicted values of ξt+h can then be used to compute predicted values of normalized call prices using

eq. (2), which can be de-normalized using the predicted values of St+h.

The number of simulations that can be performed is arbitrary, so that a stable value of the VaR can be

computed as the empirical quantile of simulated call prices.
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3.4.2 Limitations of the neural-SDE model

In this calibration routine of the neural-SDE model, there is an important point which, according to us,

should be taken into consideration in applications: the G parameters are calibrated on the history of market

prices, but given their linear role in the normalized call prices, there is little hope that a long history of call

prices will be well explained by the very same G factors. Indeed, normalized call prices in this model are

random linear combinations of �xed surfaces, so that one should probably expect the call prices to maintain

these �xed parameters for no more than a typical period of one month or so, after which they should be

re-calibrated. In [7], the G parameters are calibrated on a 17-years history, which might be far from being

realistic in practice. As a consequence, calibration �t is not as good as in other more dynamic models. As

an example, the mean absolute percentage error (MAPE) computed by the authors in Table 2 of [8] using

two components of ξt is around 4.61% and 5.40%, while in our tests limiting the calibration window of G

to one month reduces the MAPE to about 1.5 percentage points. On the other hand, it is not possible to

simply calibrate the G parameters on shorter periods of past history, since then the neural-SDE on the ξt

cannot be properly trained to estimate the model parameters, given the too low amount of historical data.

To some extent, there is therefore a trade-o� between the stationarity of the model and its relevance - note

though that one could argue that this is a general situation for any model.

Furthermore, this stationarity of parameters is likely to be related to the low procyclicality of the obtained

VaR estimations that the authors claim: because the G parameters are the same since several years, the

initial margin is indeed automatically less reactive to market changes.

This being said, the neural-SDE model provides a consistent and tractable framework which seems to us

very promising.

3.5 The market data in input of the margin computa-

tion, and Market/Model add-ons

The models described above for margin computations (FHS, arbitrage-free GANs, neural-SDE) have all in

common the generation of scenarios for the risk factors. In the case of options, these scenarios can only

be generated after an initial calibration of market prices using any internal model, calibration which will

then be reversed to get simulated prices. Indeed, the CCP needs a model and/or an interpolation scheme to

get prices at any time-to-maturity and log-forward moneyness, and this scheme is used since the beginning

of the IM computation. As a result, margins are based on model prices (i.e. prices calibrated/interpolated

with the selected scheme), rather than market prices, and should then be adjusted by a term taking into

consideration how the initial discrepancy between market and model prices propagates when computing the

IM.

There can be two approaches to this issue in the context of a VaR-type model:

1. Apply the scenarios to the calibrated model prices, thus obtaining shocked model prices, and assume

that the model P&Ls are a good representative of the market P&Ls, along each scenario. This means

that the calibration error is assumed to be the same at the current date and at the future date along

the shocked scenario.
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2. Compute a Market/Model add-on, which incorporates risk coming from the fact that the model which

has been used to estimate the IM does not perfectly match market prices. Since the �nal risk require-

ment is computed on model prices and captures future movements of model prices, so that it could

di�er from the actual requirement needed for market prices, the Market/Model add-on estimates how

large the di�erence between the market IM and the model IM is and adds it to the �nal requirement.

In the second approach, market P&Ls can be decomposed in 3 terms:

� the di�erence between the portfolio price under the calibrated model and its market price: Pmod
t −Pmkt

t ;

� the di�erence between the portfolio model prices along the scenario s: P̃mod
t+h,s − Pmod

t ;

� the di�erence between the portfolio price under the calibrated model and its market price at the

simulated date along the scenario s: P̃mkt
t+h,s − P̃mod

t+h,s.

The �rst of the 3 terms above is known and can be readily computed; the second term is computed in the IM;

the third term depends on each scenario and upon the assumption on the distance between the market and

model prices at the future simulated date along each scenario. The Market/Model add-on aims at covering

this third source of risk.
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4. A simple short-term model-free for-

mula

In this section we describe a new short-term model-free formula for options VaR, which only depends on

market data and does not need any model-speci�c calibration. The short-term attribute depends on the

fact that approximations are performed in the MPOR component, so that the shorter the MPOR, the more

precise is the formula.

In the following we will denote with DFt(τ) and Ft(τ) the discount factor and the forward value for time-

to-maturity τ evaluated at time t. We work under the hypothesis of known constant rates between today

date t and the MPOR date t + h, so that for a given time-to-maturity, discount factors are constant and

forward values are proportional to the underlier St. In particular we write Ft(τ) = f(τ)St. We call δt the

one day unit and consider an MPOR h = nδt of n days. Finally, we denote respectively by pY and FY

the probability density function and the cumulative density function of a generic random variable Y . The

cumulative density function and the probability density function of a standard Gaussian random variable

are denoted with Φ and φ respectively. Also, when considering the distribution of the underlier St+h at time

t+h, we actually mean the distribution conditional to quantities at time t (i.e. St and other risk factors ξt).

In the following sections we will always consider a portfolio of Vanilla calls with price at time t given by

Πt(St, ξt) =
∑
i

πiC
(
Ti − t, log

Ki

f(Ti − t)St
;St, ξt

)
where C(τ, k;St, ξt) is a generic model price of a call with time-to-maturity τ and log-forward moneyness k,

depending on the current value of the underlier St and of the other possible risk factors ξt (as for example

the implied volatility in the short-term model-free case). The P&Ls are de�ned as the �nite di�erences of

the portfolio over the MPOR:

P&L := Πt+h(St+h, ξt+h)−Πt(St, ξt).

The h-days VaR at con�dence level θ (close to 1) of the portfolio is the quantity v(θ, h) such that

P
(
P&L ≤ v(θ, h)

)
= 1− θ.

Sometimes we will need to develop the above expression using conditional probabilities. In particular, it

holds
P
(
P&L ≤ v(θ, h)

)
= E[1P&L≤v(θ,h)]

= E
[
E[1P&L≤v(θ,h)|St+h]

]
=

∫ ∞

0

P
(
P&L ≤ v(θ, h)|St+h = s

)
dFSt+h

(s).

(5)

In the case of existence of a probability function for St+h, the latter expression can be written as

P
(
P&L ≤ v(θ, h)

)
=

∫ ∞

0

pSt+h
(s)P

(
P&L ≤ v(θ, h)|St+h = s

)
ds.
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4.1 The Black-Scholes case and the Stochastic Volatility

case

Before introducing the short-term model-free VaR formula, we �rstly look at some prototypical examples

such as the Black-Scholes and the Stochastic Volatility cases.

In the classic Black-Scholes case, the underlier is a geometric Brownian motion

dSt = αtStdt+ βtStdWt

under the real-world probability measure. Applying Ito's lemma, portfolio prices are processes such that

dΠt(St) =

(
Stαt

d

dSt
Πt(St) +

1

2
S2
t β

2
t

d2

dS2
t

Πt(St)

)
dt+ Stβt

d

dSt
Πt(St)dWt.

Writing dWt as
√
hX where X is a standard Gaussian random variable and approximating the above ex-

pression at the �rst order we have that the P&Ls have the form

Πt+h(St+h)−Πt(St) ≈ Stβt
d

dSt
Πt(St)

√
hX.

Then, it is easy to compute the VaR with a �rst order approximation:

P
(
P&L ≤ v(θ, h)

)
= P

(
d

dSt
Πt(St)X ≤ v(θ, h)

Stβt

√
h

)
so that

v(θ, h) = Φ−1(1− θ)Stβt

∣∣∣ d

dSt
Πt(St)

∣∣∣√h.

The above reasoning can actually be generalized to Stochastic Volatility models where the volatility of the

underlier is a stochastic process with volatility σt:

dSt = αtStdt+ ξtStdW0,t

dξt = µtdt+ σtdWt

dW0,tdWt = ρtdt.

In the above formulation we have dropped the dependency of volatility parameters in the volatility itself,

i.e. µt = µt(ξt) and σt = σt(ξt). Indeed, in order to guarantee the positivity of the volatility there must

be such a dependency. Applying Ito's lemma to the portfolio Πt(St, ξt) of option prices generated by the

pricing version of the Stochastic Volatility model, one �nds

dΠt(St, ξt) = atdt+ Stξt
d

dSt
Πt(St, ξt)dW0,t + σt

d

dξt
Πt(St, ξt)dWt
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where

at = αtSt
d

dSt
Πt(St, ξt) + µt

d

dξt
Πt(St, ξt) +

ξ2t S
2
t

2

d2

dS2
t

Πt(St, ξt)+

+
σ2
t

2

d2

dξ2t
Πt(St, ξt) + ξtStσtρt

d2

dStdξt
Πt(St, ξt).

Considering the �nite increments of the portfolio and neglecting linear terms for h going to 0, the form of

the P&Ls becomes

Πt+h(St+h, ξt+h)−Πt(St, ξt) ≈ Stξt
d

dSt
Πt(St, ξt)

√
hX0 + σt

d

dξt
Πt(St, ξt)

√
hX,

where X0 and X are standard jointly normal random variables with correlation ρt equal to the correlation of

the two Brownian motions. Then, any combination of X0 and X is still normal and the VaR of the portfolio

is

v(θ, h) = Φ−1(1− θ)

√(
Stξt

d

dSt
Πt(St, ξt)

)2
+
(
σt

d

dξt
Πt(St, ξt)

)2
+ 2ρtStξtσt

d

dSt
Πt(St, ξt)

d

dξt
Πt(St, ξt)

√
h.

(6)

4.2 A short-term model-free formula

Driven by the results in the Black-Scholes and the Stochastic Voaltility case, we generalize the VaR formulas

to a short-term model-free formula which can be applied to any historical series of spot and option prices.

With this aim, we rather work using the implied volatility, which can always be computed from market prices

using a root-�nding algorithm applied to the classic Black-Scholes pricing formula

BSt
(
k, τ, ω, Ft(τ),DFt(τ), σ

imp
t (k, τ)

)
= ωDFt(τ)Ft(τ)

(
Φ(ωd1)− ekΦ(ωd2)

)
where k = log K

Ft(τ)
is the log-forward moneyness, τ = T − t is the time-to-maturity,

d1,2 = − k

σimpt (k, τ)
√
τ
± σimpt (k, τ)

√
τ

2

and ω = +1 if the option is a call, −1 if it is a put.

When computing risks, the implied volatility σimpt (k, τ) is generally considered as a risk factor together with

the underlier St. For this reason, we write it as a function of a driving factor ξt: σ
imp
t (k, τ) = σ(k, τ, ξt), so

that the dynamics of the two risk factors are

dSt = αtStdt+ βtStdW0,t

dξt = µtdt+ ηtdWt

dW0,tdWt = ρtdt.

(H1)

Observe that the implied volatility risk factor depends on the log-forward moneyness and the time-to-

maturity rather than the contract strike and its maturity. Indeed, the time series of a �xed contract is
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available since its issue date and is then limited in time. Furthermore, we do not expect its implied volatility

to have any nice statistical property of stationarity that could legitimate drawing meaningful forecasts for its

historical returns between time t and t+ h. On the contrary, we expect that the market encode the implied

volatility risk rather in a log-forward moneyness, time-to-maturity map, meaning that the time series of the

implied volatility at a �xed point in this relative grid will have much nicer features.

Let us consider a portfolio of calls and puts written as Black-Scholes functions:

Πt(St, ξt) =
∑
i

πiBSt

(
log

Ki

f(Ti − t)St
, Ti − t, ωi, Ft(Ti − t),DFt(Ti − t), σ

(
log

Ki

f(Ti − t)St
, Ti − t, ξt

))
=:
∑
i

πiBS
i
t.

(7)

Repeating the steps in section 4.1, the approximated formula for the VaR becomes

v(θ, h) = Φ−1(1− θ)

√(
Stβt

d

dSt
Πt(St, ξt)

)2
+
(
ηt

d

dξt
Πt(St, ξt)

)2
+ 2ρtStβtηt

d

dSt
Πt(St, ξt)

d

dξt
Πt(St, ξt)

√
h.

This formula is far from being model-free for two reasons:

� The term d
dSt

Πt(St, ξt) is the full derivative of the portfolio Πt with respect to St, which also involves

the derivative of prices with respect to the implied volatility, since it depends on k = log K
f(τ)St

. As

a consequence, it does not correspond to the Black-Scholes delta and its expression must be made

explicit.

� The term d
dξt

Πt(St, ξt) is the derivative of the portfolio with respect to ξt, and it does not coincide

with what the market indicates with vega, i.e. the sensibility of the portfolio to the option volatility.

Given the above, we shall rather develop the dynamics of the portfolio as a function of St and σ(k, τ, ξt)

where k also depends on St.

Observe that for �xed k and τ , we have

dσt = ∂ξσt dξt

= µt∂ξσt dt+ ηt∂ξσt dWt

(8)

where σt = σ(k, τ, ξt). We de�ne ζt(k, τ, ξt) := ηt∂ξσ(k, τ, ξt).

On the other hand, writing k = log K
f(τ)St

and τ = T − t, we rather �nd

dσt = at dt−
∂kσt

St
dSt + ∂ξσt dξt

=
(
at − αt∂kσt + µt∂ξσt

)
dt− βt∂kσt dW0,t + ζt dWt

(9)

where at = −∂τσt + ∂kσt
∂τf
f +

β2
t

2 (∂2
kσt + ∂kσt) +

η2
t

2 ∂2
ξσt − ρtβtηt∂ξ∂kσt and σt = σ

(
log K

f(T−t)St
, T − t, ξt

)
.

Using eq. (9) and ignoring the terms in h in the �nite scheme of the portfolio increments, the P&Ls assume

the form

Πt+h(St+h, ξt+h)−Πt(St, ξt) ≈ βt

(
St

∑
i

πi∂SBS
i
t −
∑
i

πi∂kσ
i
t∂σBS

i
t

)√
hX0 +

∑
i

πiζ
i
t∂σBS

i
t

√
hX
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where σi
t = σ

(
log Ki

f(Ti−t)St
, Ti − t, ξt

)
, ζit = ζt

(
log Ki

f(Ti−t)St
, Ti − t, ξt

)
, and X0 and X are standard jointly

normal random variables with correlation ρt.

Let us denote ∆i
t := ∂SBS

i
t and Vi

t := ∂σBS
i
t. Using the same proof as in the Stochastic Volatility case of

section 4.1, we �nally �nd a VaR formula on an MPOR horizon of h days of the form:

VaRθ,t(h) = Φ−1(1− θ)
√
c2t + q2t + 2ρtctqt

√
h

ct = βt

(
St

∑
i

πi∆
i
t −
∑
i

πiVi
t∂kσ

i
t

)
qt =

∑
i

πiζ
i
tVi

t .

(Short-term formula)

This expression is actually model-free. Indeed, the terms ∆i
t and Vi

t are respectively the Black-Scholes delta

and vega of the i-th option in the portfolio. In particular they correspond to

∆t

(
k, τ, ω, σimpt (k, τ)

)
= ωΦ(ωd1),

Vt

(
k, τ, Ft(τ),DFt(τ), σ

imp
t (k, τ)

)
= DFt(τ)Ft(τ)φ(d1)

√
τ .

The volatility βt of the underlying spot St can be computed looking at historical moves. For example, it

could be a EWMA volatility on log-returns appropriately rescaled by the square-root of the returns' distance

hr (of for example one trading day): βt =
EWMA(rS,t)√

hr
where rS,t = log St

St−hr
.

Given eq. (8), the quantity ζit is simply the vol-of-vol evaluated in
(
log Ki

f(Ti−t)St
, Ti − t, ξt

)
and it could be

also computed as a EWMA volatility on historical absolute returns of the implied volatility surface at the

�xed log-forward moneyness and time-to-maturity grid point, rescaled by the square-root of hr. For liquidity

reasons, it is also possible to approximate the latter quantity as the vol-of-vol at the 1M ATM point, times an

appropriate factor (see section 6.3 for the description of a possible way to calibrate such a factor). In [17], the

authors suggest to consider the historical series of the 1M ATM implied volatility point. A less procyclical

alternative identi�ed by the authors consists in rescaling the VVIX historical value with a sigmoid function

which ensures a smooth vol-of-vol transition between high and low volatility regimes.

The correlation parameter ρt can be computed using a EWMA correlation between spot log-returns and

absolute IV returns, where the IV point considered can be again the 1M ATM point.

Lastly, the derivative ∂kσ
i
t is the derivative of the smile with respect to the log-forward moneyness, evaluated

in
(
log Ki

f(Ti−t)St
, Ti−t, ξt

)
. Since options are quoted in strike and maturity rather than log-forward moneyness

and time-to-maturity, observe that

∂kσ
i
t = ∂kσt

(
log

Ki

f(Ti − t)St
, Ti − t, ξt

)
= K∂K σ̃impt (Ki, Ti)

where σ̃impt (K,T ) = σimpt

(
log K

f(T−t)St
, T − t

)
. The derivative of the strike smile can be recovered by simple

interpolation of market data (for example, using cubic B-splines or arbitrage-free smile models), or by �nite

di�erences of market data.
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4.2.1 t-Student short-term model-free VaR formulation

When calculating risk, a large majority of �nancial players consider the distribution of the returns of an un-

derlier St to be t-Student. The reason is linked to the shape of the probability functions of such distribution,

which are fatter, compared to a classic normal distribution. In this way the importance of extreme events is

higher and this guarantees a larger conservativeness of the risk model.

In this section we consider then a t-Student distribution for the relative returns St+h−St

St
, with νt degrees of

freedom, location parameter αth and scale parameter βt

√
h. In particular, we consider the model

St+h = St(1 + αth+ βtTt+h) (H1)

where Tt+h ∈ R is a t-Student with νt degrees of freedom, null mean and variance equal to h. Then, the

probability density function of St+h is

pSt+h
(s) =

Γ
(
νt+1
2

)
Γ
(
νt

2

)
Stβt

√
πh

(
1 +

1

νt

(
s− St(1 + αth)

Stβt

√
h

)2)− νt+1
2

. (10)

Also, for every strike K and maturity T , denoting τ = T − t, k(s) = log K
f(τ)s , we consider the increment

∆σt(k(St), τ) := σt+h(k(St+h), τ − h) − σt(k(St), τ) conditional to St+h to be a Gaussian random variable

with mean mt(St+h, k(St), τ) and variance ζt(k(St), τ)
2(1− ρ2t )h, with

mt(s, k(St), τ) = µt(k(St), τ)h+
s− St(1 + αth)

βtSt
ζt(k(St), τ)ρt.

In other words, we write the conditional implied volatility increments as

∆σt(k(St), τ)|(St+h = s) = mt(s, k(St), τ) + ζt(k(St), τ)
√
1− ρ2t

√
hX (H2)

where X is a standard Gaussian random variable.

Remark 4.1. Since with the above hypothesis we only know the distribution of the implied volatility in-

crements conditional to St+h, it could seem di�cult to calibrate parameters µt, ζt and ρt on market data.

However, given a conditional distribution, it is easy to recover the moments of the marginal distribution

using the tower property in expectations. Indeed, moments up to the second order of ∆σt(k(St), τ) (without

the conditioning to St+h) are

E[∆σt(k(St), τ)] = µt(k(St), τ)h

Var[∆σt(k(St), τ)] = ζt(k(St), τ)
2h

Corr[St+h,∆σt(k(St), τ)] = ρt.

This allows to easily calibrate parameters based on the historical mean and variance of ∆σt(k(St), τ).

In the next paragraphs, we justify the following formula for the h-days VaR with con�dence level θ under
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eqs. (H1) and (H2):

VaRθ,t(h) = F−1
Z (1− θ)

√
c2t + q2t + 2ρtctqt

√
h

ct = βt

(
St

∑
i

πi∆
i
t −
∑
i

πiVi
t∂kσ

i
t

)
qt =

∑
i

πiζ
i
tVi

t

(Short-term t-Student)

where

Z =
qt
√
1− ρ2tX + (ct + qtρt)Y√

c2t + q2t + 2ρtctqt
(11)

and X is a standard Gaussian random variable and Y is a standard t-Student with νt degrees of freedom

independent of X.

Quantities that enter eq. (Short-term t-Student) are the same as in the Gaussian case: the Black-Scholes

Greeks delta ∆i
t and vega Vi

t , the volatility βt of the underlying spot St, the vol-of-vol ζit , the correlation

ρt, and the derivative ∂kσ
i
t of the smile with respect to the log-forward moneyness. See section 4.2 for a

description of how to compute these quantities in practice from market data.

Remark 4.2. [3] shows in Theorem 1 that the probability density function of Z is

pZ(z) =

∞∑
k=0

ϕ
(νt,γ)
k gk,a1(z)

where a1 =
q
√

1−ρ2
t√

c2t+q2t+2ρtctqt
, γ = ct+qtρt

qt
√

2(1−ρ2
t )

and

ϕ
(νt,γ)
k =

Γ
(
k + 1

2

)
k!Γ
(
1
2

)
Γ
(
νt

2

) ∫ ∞

0

exp(−f)f
νt−1

2

(
f + γ2

)−k− 1
2 df

gk,a1
(z) =

Γ
(
1
2

)
Γ
(
k + 1

2

)
a1
√
2π

(
z2

2a21

)k

exp

(
− z2

2a21

)
.

Quantiles of Z can also be computed empirically, simulating the distribution of the linear combination of two

independent random variables distributed as a standard Gaussian and a standard t-Student with νt degrees

of freedom. In particular, simulations of Z can be found following the steps:

1. Simulate two independent normal random variables X and NY , with mean 0 and variance 1;

2. Turn NY into a uniform distribution UY = Φ(NY );

3. Recover the t-Student random variable via Y = F−1
t (UY ; νt) where Ft(·; νt) is the cumulative density

function of a t-Student with νt degrees of freedom;

4. Put Z =
qt
√

1−ρ2
tX+(ct+qtρt)Y√

c2t+q2t+2ρtctqt
.

We now explain the rationale of eq. (Short-term t-Student). Doing a �rst order approximation of increments

of the option portfolio Πt(St, σt), taking into consideration the dependence of every options' implied volatility
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to the log-forward moneyness and so to the underlier, we �nd that the form of the P&Ls is

Πt+h(St+h, σt+h)−Πt(St, σt) ≈ βt

(
St

∑
i

πi∂SBS
i
t −
∑
i

πi∂kσ
i
t∂σBS

i
t

)
Tt+h +

∑
i

πi∂σBS
i
t∆σi

t

= ctTt+h +
∑
i

πiVi
t∆σi

t,
(12)

where we used the same notations as in section 4.2. Here, we do not know the distribution of the increments

of the implied volatilities, so that we cannot automatically infer the distribution of the P&Ls. However, we

can still compute VaRs using the relation in eq. (5).

Firstly, we can write Tt+h =
√
hỸ where Ỹ is a standard t-Student with νt degrees of freedom, and

∆σt(k(St), τ) = µt(k(St), τ)h+ ζt(k(St), τ)
√
hX̃

for a certain random variable X̃ with mean 0 and variance 1. Then, given eq. (12), the distribution of P&L√
h

tends to the distribution of ctỸ +
∑

i πiVi
tζ

i
tX̃, which does not depend on h. In particular since

1− θ = P
(
P&L ≤ v(θ, h)

)
= P

(
P&L√

h
≤ v(θ, h)√

h

)
,

and the limiting random variable has a strictly positive density, then the function v(θ, h) is asymptotic with√
h, i.e. v(θ, h) = u(θ)

√
h+ o(

√
h). This is consistent with eq. (Short-term formula), where the h-days VaR

is proportional to the square-root of h.

Secondly, the distribution of the P&Ls conditional to St+h is Gaussian and in particular

P
(
P&L ≤ v(θ, h)|St+h = s

)
= Φ

(
v(θ, h)− ctt(s)−

∑
i πiVi

tm
i
t(s)

qt
√
1− ρ2t

√
h

)

where t(s) = s−St(1+αth)
βtSt

. Then, removing the conditionality to the probability of the P&Ls, it holds

P
(
P&L ≤ v(θ, h)

)
=

∫ ∞

−∞
pSt+h

(s)Φ

(
v(θ, h)− ctt(s)−

∑
i πiVi

tm
i
t(s)

qt
√

1− ρ2t
√
h

)
ds

=

∫ ∞

−∞
pT (y)Φ

(
v(θ, h)− cty

√
h−

∑
i πiVi

tm
i
t

(
St(1 + yβt

√
h+ αth)

)
qt
√

1− ρ2t
√
h

)
dy

where pSt+h
is as in eq. (10), pT is the probability density function of a standard t-Student with ν degrees

of freedom, and we used the transformation y = t(s)√
h
. In this way, for the Lebesgue's dominated convergence

theorem and using the fact that v(θ, h) = u(θ)
√
h+ o(

√
h), the right hand side of the previous relation goes

to ∫ ∞

−∞
pT (y)Φ

(
u(θ)− (ct + qtρt)y

qt
√
1− ρ2t

)
dy

for h going to 0. Consider two independent random variables X and Y with X a standard Gaussian and Y

a standard t-Student with νt degrees of freedom. We can write the latter expression as

E

[
P

(
X ≤ u(θ)− (ct + qtρt)Y

qt
√
1− ρ2t

)]
= P

(
X ≤ u(θ)− (ct + qtρt)Y

qt
√

1− ρ2t

)
.
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De�ning the random variable Z as in eq. (11), we shall look at the value of u(θ) such that

1− θ = P

(
Z ≤ u(θ)√

c2t + q2t + 2ρtctqt

)
.

All in all, the short-term model-free VaR formula in the t-Student case becomes eq. (Short-term t-Student)

ignoring terms in o(
√
h).

Remark 4.3. In both eq. (Short-term formula) and eq. (Short-term t-Student) the vol-of-vol parameter

depends on the strike and maturity of the option, while the correlation does not. This is due to the underlying

hypothesis that the whole implied volatility surface is driven by one single Brownian motion, even though

the magnitude of movements for each surface point depends on the point itself. The short-term model-free

formulas can be generalized to the case where there is more than one Brownian motion driving the implied

volatility surface (typically the target dimension is of 2 or 3).

4.3 Properties and limitations

4.3.1 Local quantities and extreme risk: concrete practical

implementation

Observe that all the above VaR estimations (the Black-Scholes formula, the Stochastic volatility formula, and

the short-term model-free formula) are de�ned with local quantities: deltas, vegas, instantaneous volatility

and correlation coe�cients. The initial margin however incorporates a tail risk which looks at future moves

in prices that typically correspond to large moves. Even if there is an apparent paradox here, the explanation

is clear: those formulas are asymptotic formulas when the time step h goes to zero, and for su�cient small

h even the tail risk will be driven by the local quantities, in so far as we deal we di�usion models.

The whole question therefore is how those asymptotic formulas will behave in practice. Obviously, the

smaller the MPOR, or the less volatile the market, the better. A careful backtesting will be the clue here:

it will allow to diagnose whether the coverage and procyclicality behavior of the formula are satisfactory.

In this regard, and especially from a regulatory perspective, one should keep in mind that the �nal IM

formula will contain other components besides this core one, like a weighted Stress Historical VaR and the

Short Option Minimum quantity described in section 2. In general the former component will be obtained

by computing price returns along stress historical scenarios with full re-evaluation (meaning, using the

Black-Scholes formula for options with the shocked underlier and implied volatility) instead of the local �rst

order Greeks. Therefore the risk of missing a convexity behavior should be largely mitigated, if not fully

eliminated. Regarding the SOM, consider a portfolio of short deep OTM options. Today, this portfolio has

negligible delta and vega quantities, so that the VaR estimation is around 0, even though there actually is

a tail risk. This hidden risk is far to be local, but it still should be taken into consideration in the initial

margin calculation. This is the rationale of the SOM, which is already implemented by CCPs and should

cover the risk of those short-term portfolios, as discussed in section 2.
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4.3.2 Symmetry with respect to the portfolio

It is easy to see that all the new VaR formulas in this article are symmetrical with respect to the portfolio,

i.e. being short or long on the same portfolio would produce the same VaR exposure. This could seem weird,

especially when we suppose a log-normal distribution of the spot, which is not symmetric. The symmetricity

appears when we take the limit for h going to 0. Indeed, the terms multiplying
√
h are symmetrical in the

portfolio position while the ones that should break the symmetricity multiply higher orders of h, so that

they are canceled out in the limit.

However, this symmetry is not an issue when computing margins: as seen in section 2, the �nal total risk

requirement charged by the CCP is composed of the margin computed on P&Ls (re�ned by the add-ons and

the SOM) minus the NOV component. In this way, neglecting the add-ons and the SOM, a long portfolio

Π > 0 with initial margin IM has a total risk requirement equal to IM−Π; while the same portfolio but on

a short position −Π < 0 implies a total risk requirement of IM+Π.

4.3.3 Comparison with FHS

In section 3.1.3, we have seen that among its drawbacks, the FHS model is limited by the number of scenarios

that it can generate, depending on the available historical data. On the other hand, the short-term model-

free formula in section 4.2 does not need to compute simulated scenarios and eventually requires historical

data only for the calibration of volatility parameters.

Secondly, while the FHS does not capture the joint dynamics of risk factors in complex products, the short-

term model-free formula in section 4.2 considers both the singular margin impact of each risk factor and

the joint margin impact a�ected by the correlation of risk factors. Furthermore, the short-term model-free

formula for options is more natural than the FHS methodology, whose application to IV surface points is

more subtle.

A third limitation is the di�culty of FHS to generate arbitrage-free scenarios, which is not an issue for the

short-term model-free formula in section 4.2 since it does not require the generation of scenarios and does

not face the arbitrage issue.

Finally, regarding the procyclicality of the VaR estimation, we show in numerical experiments in section 6.3

that the short-term model-free VaR is less procyclical then the FHS VaR for the tested portfolios.

We turn now to the exact computation of the VaR in the neural-SDE model.
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5. Quasi-explicit formula for the VaR in

the neural-SDE model

In this section we investigate the neural-SDE model described in section 3.4 and the special speci�cation of

its parameters with the aim of applying it to an IM computation. We are not interested in the calibration

of arbitrage-free call prices surfaces via neural networks but to the a�ne factor model for normalized option

prices itself, so that parameters can be calibrated with any algorithm of choice, which is not necessarily a

neural network.

The model is particularly simple and it turns out to have a quasi-explicit formula for the VaR of option

portfolios, as we show in section 5.1 below. In practice, this could enable rapid computations for the IM in

such models, which may prove to be highly relevant when properly calibrated.

Moreover, the VaR can be approximated by a closed formula which is proportional to the square-root of

the MPOR (see section 5.2). This approximated formula coincides with the VaR formula in the Stochastic

Volatility model of section 4.1.

We reemphasize the fact that while the model can be calibrated also in di�erent ways as the ones described

in [7], the results in this chapter are still valid and independent from the calibration setup.

We use the same notations as in section 4. Furthermore, in the whole section, the notation ∥·∥2 indicates

the Euclidean 2-norm, i.e. ∥(a1, . . . , ad)T ∥22 =
∑d

i=1 a
2
i .

5.1 Quasi-explicit formula for the VaR

Consider a portfolio of Vanilla calls with price at time t given by

Πt(St, ξt) =
∑
i

πiC
(
Ti − t, log

Ki

f(Ti − t)St
;St, ξt

)
= St

∑
i

πiDFt(Ti − t)f(Ti − t)c
(
Ti − t, log

Ki

f(Ti − t)St
; ξt

) (13)

where

c
(
Ti − t, log

Ki

f(Ti − t)St
; ξt

)
= G0

(
Ti − t, log

Ki

f(Ti − t)St

)
+G

(
Ti − t, log

Ki

f(Ti − t)St

)
· ξt.

From now on, we work at time t, so that quantities St and ξt are known. The P&L := Πt+h(St+h, ξt+h) −
Πt(St, ξt) of the portfolio reads then

P&L = A(h, St+h) +B(h, St+h) ·
(
ξt+h − ξt

)
(14)
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where

A(h, s) = s
∑
i

πiDFt(Ti − (t+ h))f(Ti − (t+ h))

(
G0

(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))s

)
+

+G
(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))s

)
· ξt
)
−Πt(St, ξt),

B(h, s) = s
∑
i

πiDFt(Ti − (t+ h))f(Ti − (t+ h))G
(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))s

)
.

(15)

An important consequence to the representation in eq. (14) is the linearity of the P&Ls in ξt+h − ξt. In

terms of VaR calculations, this means that the VaR for the P&Ls' distribution conditional to St+h is linear

with respect to the VaR for the ξt+h distribution.

5.1.1 Hypothesis on the joint increments

Since from a practical perspective market data is always related to a discrete time grid, from now on, for

risk calculations we consider processes de�ned via their Euler scheme as in section 3.4.1, i.e.

St+h = St exp

((
αt −

β2
t

2

)
h+ βt(W0,t+h −W0,t)

)
,

ξt+h = ξt + µth+ σt · (Wt+h −Wt)

(16)

where W0,t+h −W0,t ∈ R and Wt+h −Wt ∈ Rd are Gaussian random variables with combined law N(0, hPt)

and Pt is the correlation matrix

Pt =

(
1 PT

S,ξ,t

PS,ξ,t Pξ,t

)
.

We work at time t, so that quantities St, ξt, αt, βt, µt and σt are known. We will not need to observe W0,t

and Wt.

Remark 5.1. The Euler schemes with time step h for the processes St and ξt de�ned via the SDE eq. (3)

are a particular case of eq. (16), therefore the results of this section hold also in this case.

To develop eq. (5) we need a partial result regarding the distribution of the increments of ξt conditional to

St+h.

Lemma 5.2. For processes in eq. (16), the distribution of ξt+h − ξt conditional to St+h = s is a Gaussian

N(mt(s), Vt) where

mt(s) = µth+
1

βt

(
log

s

St
−
(
αt −

β2
t

2

)
h

)
σt · PS,ξ,t,

Vt = h(σt · bt) · (σt · bt)T ,

and bt ∈ Rd×d is a matrix such that bt · bTt = Pξ,t − PS,ξ,t · PT
S,ξ,t.

In the case of independent processes, mt(s) = µth and Vt = hσt · σT
t .
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Proof. Let us consider the Brownian increments ∆W0,t = W0,t+h − W0,t and ∆Wt = Wt+h − Wt, which

have Gaussian joint distribution N(0, hPt). The Gaussian random variable Z = ∆Wt −∆W0,tPS,ξ has null

mean and variance equal to h(Pξ,t − PS,ξ,t · PT
S,ξ,t). Since covariance matrices are symmetric and positive

semi-de�nite, there exists a matrix bt ∈ Rd×d such that bt · bTt = Pξ,t −PS,ξ,t ·PT
S,ξ,t. Also, Z and ∆W0,t are

independent since uncorrelated and jointly Gaussian, and it follows that the distribution of ∆Wt conditional

to ∆W0,t = w0 is a Gaussian with mean w0PS,ξ,t and covariance matrix hbt · bTt .

From eq. (16), it is immediate to recover the distribution of ξt+h − ξt conditional to ∆W0,t = w0. For the

conditionality with respect to St+h = s, it is enough to substitute w0 with 1
βt

(
log s

St
−
(
αt − β2

t

2

)
h
)
.

If processes are independent, PS,ξ,t = 0, Pξ,t = Id, and the conclusion follows.

As an immediate consequence to theorem 5.2, we can write the increments of ξt conditional to St+h as

ξt+h − ξt|(St+h = s) = mt(s) +
√
hσt · bt ·X (17)

where X ∼ N(0, Id) is a Gaussian random variable independent to St+h.

Then

P&L|(St+h = s) = A(h, s) +B(h, s) ·
(
mt(s) +

√
hσt · bt ·X

)
= Â(h, s) + B̂(h, s) ·X

where
Â(h, s) := A(h, s) +B(h, s) ·mt(s) ∈ R,

B̂(h, s) := B(h, s) ·
√
hσt · bt ∈ R1×d.

(18)

In particular, conditional to St+h = s, the P&L is a sum of jointly Gaussian variables, so it is also a Gaussian

variable with law N(Â(h, s), ∥B̂(h, s)∥22). Then the quantity P (P&L ≤ v(θ, h)|St+h = s) is the cumulative

function of a Gaussian variable, and in particular it is equal to

P (P&L ≤ v(θ, h)|St+h = s) = Φ

(
v(θ, h)− Â(h, s)

∥B̂(h, s)∥2

)
.

Reconsidering eq. (5), the VaR at risk level θ for the P&Ls can be computed as speci�ed in the following

lemma.

Proposition 5.3. Under the model of eqs. (2) and (16), the h-days VaR at con�dence level θ of the portfolio

eq. (13) is the value of v(θ, h) which solves

1− θ =

∫ ∞

0

Φ

(
v(θ, h)− Â(h, s)

∥B̂(h, s)∥2

)
dFSt+h

(s)s. (19)

where eqs. (15) and (18) de�ne Â(h, s) and B̂(h, s).

Note that theorem 5.3 gives a semi-closed formula for the VaR in the neural-SDE model, with no need of

further hypothesis. As a consequence, we can compute e�ciently the VaR in this model without using any

approximation.
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We shall notice that since losses cannot be larger than today's position, the result v(θ, h) should always be

higher than minus the current value of the portfolio, i.e. v(θ, h) ≥ −Πt(St, ξt). This condition holds true if

and only if the P&Ls' distribution is null below −Πt(St, ξt), or equivalently if and only if the distribution of

future prices is null below 0. In particular, it must hold

G · ξt+h > −G0

for any ξt+h. This condition does not seem to be guaranteed a priori. Indeed, it depends on how the

parameters of the distribution of the ξt are calibrated. However, if the ξt are calibrated such that call prices

always satisfy no arbitrage conditions, then in particular prices will always be positive.

5.1.2 Calls and Puts portfolio

In the case of portfolios with both call and put options, it is su�cient to re-write put options using the

put-call-parity

P
(
T − t, log

K

Ft(T − t)

)
= C

(
T − t, log

K

Ft(T − t)

)
−DFt(T − t)

(
Ft(T − t)−K

)
.

In this way, the relation in eq. (14) still holds rede�ning quantities A and B with elementary steps. In

particular for every put option position πP
(
T − t, log K

Ft(T−t)

)
in the portfolio, A(h, s) adds the term

sπDFt(T − (t+ h))f(T − (t+ h))

(
G0

(
T − (t+ h), log

K

f(T − (t+ h))s

)
+

+G
(
T − (t+ h), log

K

f(T − (t+ h))s

)
· ξt − 1

)
+ πDFt(T − (t+ h))K,

with Πt(St, ξt) updating its value with the added puts, while B(h, s) adds

sπDFt(T − (t+ h))f(T − (t+ h))G
(
T − (t+ h), log

K

f(T − (t+ h))s

)
.

5.2 Closed formula for the short term VaR

In this section we start by proving that the VaR in the neural-SDE model for option prices is of the form

u(θ)
√
h asymptotically with h. This formulation re�ects empirical results and standard models adopted in

industry and it is consistent with eq. (Short-term formula). Then, we state the main result of this section

computing the explicit form of the function u(θ).

Firstly, we look at the form of the function v(θ, h) when h is small.

Lemma 5.4. Under the model of eqs. (2) and (16), the h-days VaR at con�dence level θ of the portfolio

eq. (13) is asymptotic to
√
h for h going to 0:

VaRθ,t(h) = u(θ)
√
h+ o

(√
h
)

for a certain function u(θ) not depending on h.
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We give the proof in appendix A.

Our next result uses the quantities

ct := Stβt

∑
i

πiDFt(Ti − t)f(Ti − t)×

×
[
G0

(
Ti − t, log

Ki

f(Ti − t)St

)
+G

(
Ti − t, log

Ki

f(Ti − t)St

)
· ξt − 1Puts(i)+

− ∂k

(
G0

(
Ti − t, log

Ki

f(Ti − t)St

)
+G

(
Ti − t, log

Ki

f(Ti − t)St

)
· ξt
)]

+

+B(0, St) · σt · PS,ξ,t,

qt :=
∥∥B(0, St) · σt · bt

∥∥
2
,

(20)

where 1Puts(i) is 1 if the index i refers to a put, otherwise it is null, and

B(0, St) = St

∑
i

πiDFt(Ti − t)f(Ti − t)G
(
Ti − t, log

Ki

f(Ti − t)St

)
.

Remark 5.5. It is easy to prove that ct and qt can be written with the alternative expressions:

ct = Stβt
d

dSt
Πt(St, ξt) +∇ξtΠt(St, ξt)

T · σt · PS,ξ,t,

qt = ∥∇ξtΠt(St, ξt)
T · σt · bt∥2.

We can now state the main result of this section.

Proposition 5.6. Under the model of eqs. (2) and (16), the h-days VaR at con�dence level θ of the portfolio

eq. (13) is

VaRθ,t(h) = Φ−1
(
1− θ

)√
c2t + q2t

√
h+ o

(√
h
)

(21)

where ct and qt are de�ned in eq. (20).

The proof is given in appendix B.

Corollary 5.7. Under the model of eqs. (2) and (16) with d = 1, the h-days VaR at con�dence level θ of

the portfolio eq. (13) is

VaRθ,t(h) = Φ−1
(
1− θ

)
×

×

√(
Stβt

d

dSt
Πt(St, ξt)

)2
+
(
σt

d

dξt
Πt(St, ξt)

)2
+ 2PS,ξ,tStβtσt

d

dSt
Πt(St, ξt)

d

dξt
Πt(St, ξt)

√
h+

+ o
(√

h
)
.

Observe that this is compatible with the Stochastic Volatility model's VaR in eq. (6).
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5.2.1 Normal distribution for St+h

Theorem 5.2 still holds considering normal increments for St+h:

St+h = St

(
1 + αth+ βt(W0,t+h −W0,t)

)
,

appropriately rede�ning the quantity mt(s). Indeed, in this case mt(s) becomes µth+ s−St(1+αth)
Stβt

σt ·PS,ξ,t.

The results in theorems 5.4 and 5.6 are exactly the same as for the log-normal case. Indeed, the probability

density function of St+h is

pSt+h
(s) =

1

Stβt

√
2πh

exp

(
−

(
s− St(1 + αth)

Stβt

√
2h

)2)

and the conclusion can be easily attained as in the previous case, using the transformation y = s−St(1+αth)

Stβt

√
h

as done in appendix B.

5.2.2 t-Student distribution for St+h

As in section 4.2.1, we consider the case where the increments of the underlier St follow a t-Student distri-

bution, while increments of the implied volatility σt are Gaussian conditional to St+h.

Theorem 5.2 holds true in the Gaussian case because the random variable Z = ∆Wt − ∆W0,tPS,ξ is still

Gaussian and its decorrelation with ∆W0,t implies its independence. However, in this case ∆W0,t is substi-

tuted with the t-Student Tt and we cannot derive the same result. We need then some additional hypothesis

to derive the equivalent of theorem 5.3 when St+h is a t-Student, and in particular we shall take eq. (17) as

granted a priori.

Lemma 5.8. Consider the model of eq. (2) and the hypothesis that

St+h = St(1 + αth+ βtTt+h)

where Tt+h ∈ R is a t-Student with νt degrees of freedom, null mean and variance equal to h, and ξt+h − ξt

conditional to St+h = s is a Gaussian random variable with mean mt(s) and covariance matrix Vt with

mt(s) = µth+
s− St(1 + αth)

Stβt
σt · PS,ξ,t,

Vt = h(σt · bt) · (σt · bt)T ,

and bt ∈ Rd×d is a matrix such that bt · bTt = Pξ,t − PS,ξ,t · PT
S,ξ,t, for certain parameters µt, PS,ξ,t ∈ Rd, σt,

Pξ,t ∈ Rd×d. Then the h-days VaR at con�dence level θ of the portfolio eq. (13) is the value of v(θ, h) which

solves

1− θ =

∫ ∞

0

Φ

(
v(θ, h)− Â(h, s)

∥B̂(h, s)∥2

)
dFSt+h

(s)s.

where eqs. (15) and (18) de�ne Â(h, s) and B̂(h, s).
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The calibration of the parameters µt, PS,ξ,t, σt and Pξ,t is practically di�cult if performed from the dis-

tribution of ξt+h − ξt conditional to St+h. However, as in section 4.2.1, we can recover the moments of

the marginal distribution, allowing an easy calibration of the parameters based on the historical mean and

covariances of ξt+h − ξt.

Corollary 5.9. Under the model

St+h = St(1 + αth+ βtTt+h)

where Tt+h ∈ R is a t-Student with νt degrees of freedom, null mean and variance equal to h, if ξt+h − ξt

conditional to St+h = s is a Gaussian random variable with mean mt(s) and covariance matrix Vt as in

theorem 5.8, then

E[ξt+h − ξt] = µth

Cov[ξt+h − ξt] = hσt · Pξ,t · σT
t

Cov

[(
St+h

ξt+h − ξt

)]
=

(
β2
t S

2
t h βtSth(σt · PS,ξ,t)

T

βtSthσt · PS,ξ,t hσt · Pξ,t · σT
t

)
.

The result in theorem 5.4 still holds true in the t-Student case. The proof is equivalent to the one given in

appendix A, with the adaptations regarding the distribution of St+h and ξt+h − ξt. These adaptations can

be found in the proof of eq. (Short-term t-Student) in section 4.2.1. As a consequence, the function v(θ, h)

is of the form u(θ)
√
h+ o(

√
h) for h small.

The probability density function of St+h is as in eq. (10). In this way, using the transformation y =
s−St(1+αth)

Stβt

√
h

and repeating the calculations in appendix B.1, we �nd eq. (23) with exactly the same values

for ct and qt. We then look for the value of u(θ) such that

1− θ = E

[
P

(
qtX + ctY√

c2t + q2t
≤ u(θ)√

c2t + q2t

)]
.

The random variable Z = qtX+ctY√
c2t+q2t

is not Gaussian in this case since it is the sum of a standard Gaussian

random variable and a standard t-Student random variable, which are independent. However, it still holds

that the initial margin in the case of t-Student returns is

VaRθ,t(h) = F−1
Z

(
1− θ

)√
c2t + q2t

√
h+ o

(√
h
)
.

The empirical quantile of Z can be recovered as detailed in section 4.2.1.

The above observations lead us to the following.

Corollary 5.10. Under the framework of theorem 5.8, the h-days VaR at con�dence level θ of the portfolio

eq. (13) is

VaRθ,t(h) = F−1
Z

(
1− θ

)√
c2t + q2t

√
h+ o

(√
h
)

where ct, qt are de�ned in eq. (20) and Z = qX+cY√
c2t+q2t

with X and Y independent and X standard Gaussian,

Y standard t-Student with νt degrees of freedom.
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6. Numerical experiments

6.1 Backtesting option portfolios

Before going into the numerical experiments, it is worth focusing on the speci�c issues arising while backtest-

ing option portfolios. Indeed, options are contracts with a �xed strike and a �xed expiry, so that considering

a backtest on a real �xed contract is awkward for two reasons: at maturity the option will expire and the

backtest could not continue anymore; the option could become far OTM or ITM in time, completing losing

interest in the market and becoming illiquid or even not traded anymore.

Moreover, in order to focus on a given risk (like the calendar spread one), and its adequate coverage by the

margin model, it is better to consider a portfolio with a constant risk pro�le across time, and so constant

speci�cations in terms of moneyness and time-to-maturity.

For this reason, options are generally backtested for �xed log-forward moneyness (or delta) and �xed time-

to-maturity, rather than �xed contract. Of course, these desired options are not always available among the

market quoted ones, so that two possibilities arise:

1. Considering the nearest in log-forward moneyness (or delta) and time-to-maturity real quoted option.

2. Considering synthetic option prices on the chosen �xed log-forward moneyness (or delta) and �xed

time-to-maturity obtained via the model pricing criteria.

In the �rst case, the backtested portfolios will possibly change every day, depending on how much the ATM

level has moved and on the rolling maturity. In the second case, the VaR estimations are compared to model

P&Ls rather than real ones, so that if the calibration model is not good enough, backtesting results could

be misleading.

In general, there is no preferred way to backtest option portfolios and CCPs may adopt both methodologies.

We recommend to perform the two approaches for production, because the synthetic option prices, due to

the complexity of the data treatments performed, may eventually not re�ect fully faithfully the e�ective

market returns when they are available, as used directly in the �rst approach above.

6.2 VaR formula in the Heston model

The VaR formula in eq. (6) can be applied to any Stochastic Volatility model. In this section we test it on

the classic Heston model

dSt = αtStdt+
√
νtStdW0,t

dνt = κ(θ − νt)dt+ ξ
√
νtdWt

dW0,tdWt = ρdt.
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In this case, eq. (6) has the form

VaRθ,t(h) = Φ−1(1−θ)

√
S2
t νt

( d

dSt
Πt(St, νt)

)2
+ ξ2νt

( d

dνt
Πt(St, νt)

)2
+ 2ρξStνt

d

dSt
Πt(St, βt)

d

dνt
Πt(St, νt)

√
h.

(22)

Firstly, we simulate one year (365 days) history of the process (St, νt) with a simple Euler scheme of the

form

St+δt = St

(
1 + αtδt+

√
νt
√
δtX0

)
νt+δt = νt + κ(θ − νt)δt+ ξ

√
νt
√
δtX

where X0, X are standard Gaussian random variables with correlation ρ. Di�erences are negligible using

the log-formulation for St, i.e.

St+δt = St exp
((

αt −
νt
2

)
δt+

√
νt
√
δtX0

)
,

or using a Milstein scheme instead of the Euler's one.

At this point, for di�erent outright, calendar and butter�y portfolios, we compute daily prices using the semi-

analytical formula for a call option in the Heston model described in [15]. We take null rates, so that the

forward price coincides with the spot value and the discount factor is 1. Finally we compare real PnLs with

0.99-VaR estimations as in eq. (22) on di�erent MPOR horizons. In order to compute portfolio derivatives

with respect to the spot and the volatility of the spot, we use the average between the corresponding backward

and forward �nite di�erences:

d

dSt
Πt(St, νt) ≈

Πt(St + ε, νt)−Πt(St − ε, νt)

2ε
,

d

dνt
Πt(St, νt) ≈

Πt(St, νt + ε)−Πt(St, νt − ε)

2ε
.

Note in particular that these quantities are not the Black-Scholes ones de�ned through the sensitivities of

the Black-Scholes formula evaluated at the implied volatility corresponding to the Heston model price.

We use calibrated Heston parameters on S&P500 on December 2015 (see [5]), in particular (κ,
√
θ, ξ, ρ) =

(6.169, 0.16168, 0.477,−0.781), and we start with initial values S0 = 2054 and
√
ν0 = 0.15562. For the

Euler scheme, we choose a step δt of 10−1 days. The portfolios considered are outright calls with delta in

{0.2, 0.35, δATM, 0.65, 0.8} and time-to-maturity in {30, 90, 180, 365} days, and the resulting combinations of

calendar spread and butter�y spread portfolios. In particular, a calendar spread is a portfolio with one short

call at a �xed strike K and maturity T1 and one long call with same strike K and maturity T2 > T1. For a

�xed delta, the common strike of the two options is chosen to be the one related to the shortest maturity.

A butter�y spread is composed of two long calls with deltas δ and 1 − δ respectively, and two short ATM

calls. For butter�y spreads, we also test the deltas 0.1, 0.3, 0.4, 0.45.

The number of tested portfolios is then: 5× 4 = 20 outrights,
(
4
2

)
× 5 = 30 calendar spreads, and 6× 4 = 24

butter�y spreads; in total 74 portfolios.

For each tested portfolio, we compute the coverage ratio as the number of days where the model VaR covers

the realized loss over the total number of tested days, and the size of losses as the ratio between the margin

loss (di�erence between realized loss and model VaR) and the portfolio price. The average and the median
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MPOR (days) Coverage Size of loss
Mean Median Mean Median

1 0.9927 0.9945 0.0485 0.0204
2 0.9902 0.9945 0.0645 0.0353
3 0.9896 0.9945 0.0682 0.0422

Table 1: Average coverage and size of loss of eq. (22) on 74 option portfolios on simulated Heston data.

MPOR (days) Coverage Size of loss
Mean Median Mean Median

1 0.9853 0.9863 0.0404 0.0194
2 0.9826 0.9822 0.0565 0.0368
3 0.9813 0.9808 0.0496 0.0255

Table 2: Average coverage and size of loss of the short-term model-free VaR eq. (Short-term formula) on 74
option portfolios on simulated Heston data, under the hypothesis of log-normal distribution of spot returns.

over all portfolios is displayed in table 1. The results are very satisfactory for all MPORs. Indeed, the

average coverage meets the 0.99-VaR requirement and breaches are of a very small size below 7% of the

portfolio value.

Similarly, we compute the initial margin using the short-term model-free formula described in section 4.2.

In particular, we simulate 5 years history of an Heston process with same parameters as in the previous test

and compute the initial margin for the same portfolios on the last year's observations (the previous history

is used to calibrate parameters). The formula used is then eq. (Short-term formula), where the delta and

the vega Greeks are the Black-Scholes ones, the spot volatility, the vol-of-vol and the correlation between

risk factors are computed with the EWMA speci�cation, and the derivative of the implied volatility with

respect to the log-forward moneyness in computed via �nite di�erences. The implied volatility point used

to compute the EWMA correlation is the 1M ATM point.

As in the previous test, we compute the average coverage and size of loss for each tested MPOR. Results are

shown in table 2. Results are less conservative than in the previous test since the coverage is around 0.983.

However, the size of loss is still very small compared to the portfolio value, and actually smaller than in the

previous test.

Results can actually be improved using the hypothesis of a t-Student distribution for spot returns and

rede�ning the VaR for MPOR h as in eq. (Short-term t-Student) where the distribution of Z is obtained

empirically as explained in section 4.2.1. Table 3 shows results when considering 5 degrees of freedom in the

t-Student distribution of spot returns. As expected, results are more conservative than the normal case and

satisfy the 0.99 coverage requirement.

MPOR (days) Coverage Size of loss
Mean Median Mean Median

1 0.9907 0.9918 0.0362 0.0164
2 0.9886 0.9918 0.0596 0.0364
3 0.9889 0.9945 0.0485 0.0291

Table 3: Average coverage and size of loss of the short-term model-free VaR eq. (Short-term t-Student) on
74 option portfolios on simulated Heston data, under the hypothesis of t-Student with 5 degrees of freedom
distribution of spot returns.
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6.3 Coverage performances of the short-term model-free

VaR

In this section we show the results of coverage of the short-term model-free 0.99 VaR formula in section 4.2

compared with the classical FHS model described in section 3.1.

We use a database of S&P500 data provided to Zeliade by the Clearify project4 on end of the day option

prices. Firstly, we clean the rough data removing options with 0 volume and use the put-call-parity on mid

prices to extrapolate forward and discount factors for each quoted maturity having at least two put-call

couples. Then, we remove all calls not satisfying the arbitrage bounds

DFt(T )(Ft(T )−K)+ ≤ Ct(T,K) ≤ DFt(T )Ft(T ),

and all puts not satisfying

DFt(T )(K − Ft(T ))
+ ≤ Pt(T,K) ≤ DFt(T )K.

At this points, puts are transformed into calls and all the following computations are performed for call

prices.

In order to get normalized historical prices, we compute synthetic historical prices on a �xed grid of time-

to-maturity and log-forward moneyness. At this aim, we observe that market data is generally dense around

the ATM point for short maturities and it spreads out with increasing expiry. For this reason, the most

cunning �xed grid should be in delta, so we identify 17 delta points from 0.015 to 0.985 and compute the

corresponding log-forward moneyness for a symbolic volatility of 0.1, over the grid of time-to-maturities of

2, 5, 10, 21, 42, 63, 126 and 252 days. Observe that in this way the grid is not constant in log-forward

moneyness for di�erent time-to-maturities. At this point, we �rstly compute implied volatilities based on

real prices. Then, we interpolate linearly on the log-forward moneyness direction since data is dense enough.

The interpolation on the time-to-maturity direction is done on the implied total variances (squared implied

volatilities times the time-to-maturity) adding synthetic points for the zero maturity equal to 0 and then

interpolating linearly. The interpolated prices are then corrected to avoid static arbitrage as described in [6].

For comparison, we implemented a second interpolation scheme �rstly adding synthetic points for the zero

maturity (setting prices equal to their intrinsic values) and for extreme moneyness (with prices equal to the

discounted forward on the left and null prices on the right); then normalizing all prices by their discounted

forward; �nally using monotonic cubic splines on the log-forward moneyness direction and linear interpolation

on the time-to-maturity direction. The �nal results reported in this section do not signi�cantly change.

We consider two portfolios: the �rst one is an ATM calendar spread between maturities of 1M and 6M; while

the second one is a butter�y spread on maturity 3M and moneyness 0.9, 1, 1.1. We compute the VaR for an

MPOR horizon of 1 day and a con�dence level θ = 0.99.

The short-term model-free VaR is obtained computing:

1. The spot volatility βt via a EWMA volatility algorithm with decay factor 0.97 on spot log-returns,

divided by the square-root of the daily step;

4Clearify is a collaboration between Zeliade and the Imperial College Mathematical Finance Department funded by an

Imperial Faculty of Natural Sciences Strategic Research Funding Award.
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2. The correlation ρt via a EWMA correlation on spot log-returns and ATM implied volatility absolute

returns;

3. The vol-of-vol ζt(k, τ) as F times the 1M ATM vol-of-vol obtained as a EWMA volatility on implied

volatility absolute returns, divided by the square root of the daily step. In order to be conservative

enough, the F factor is 1.1 times the quantile 0.9 of 5 years history of ratios between the (k, τ) vol-of-vol

and the 1M ATM vol-of-vol;

4. Delta and vega quantities as the Black-Scholes deltas and vegas evaluated at the option implied volatil-

ity;

5. The derivative of the smile with respect to the log-forward moneyness as the derivative of the interpo-

lated smile via B-splines.

Since we consider log-normal spot returns, we use the VaR formulation with normal quantiles of eq. (Short-

term formula).

The FHS risk factors are the spot prices and the 17 × 8 implied volatility grid points for �xed log-forward

moneyness and time-to-maturity. We consider log-returns for the former risk factors and absolute returns

for the latter ones. The volatility of risk factors' returns is computed via EWMA with decay factor 0.97.

The future discount factors and forward values are obtained under the assumption of constant risk-free rates

in the MPOR horizon.

We backtest the short-term model-free VaR and the FHS VaR against the synthetic P&Ls as explained in

the second approach of section 6.1.

Figure 1 shows the VaR patterns for the tested portfolios. We can see that the short-term model-free VaR

has more breaches then the FHS VaR, however these are of small size and can be entirely removed setting a

vol-of-vol factor F = 1. Alternatively, one could consider the t-Student framework described in section 4.2.1.

The most noticeable feature of the short-term model-free VaR is its regularity compared to the FHS VaR.

In particular, the short-term model-free VaR behaves as we expect after large moves in realized P&Ls, and

it also softens its behavior, without big jumps. On the contrary, the FHS VaR is not as consistent (and

sometimes seems to move without following market patterns).

Furthermore, the short-term model-free VaR looks more smooth, i.e. less procyclical. To prove this sentence,

we compute the peak-to-trough ratio on the whole 2019 dates and the average n-day procyclicality measure

(in percentage) for n equal to 1, 5, 10 and 20 days. In particular, the two quantities are computed as

Peak-to-trough =
maxt

(
−VaR0.99,t(h)

)
mint

(
−VaR0.99,t(h)

)
n-day % = maxt

(
−VaR0.99,t(h)

−VaR0.99,t−n(h)
− 1

)
× 100

where t ranges in the whole 2019 and we choose an MPOR h = 1. Results are displayed in table 4. We

see that except for the 1-day procyclicality measure in the calendar spread portfolio, all other procyclicality

measures for both portfolios are largely smaller for the short-term model-free VaR, i.e. the latter model is

less procyclical than the FHS VaR.
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Calendar ATM 1M-6M Butter�y 3M m(0.9, 1, 1.1)
FHS Short-term model-free FHS Short-term model-free

Peak-to-trough 5.32 3.27 2.26 2.77
1-day % 42.17 45.38 31.34 17.95
5-day % 90.11 89.04 70.47 44.23
10-day % 143.88 109.28 106.69 52.17
20-day % 139.75 118.53 90.35 44.56

Table 4: Comparison between FHS VaR and short-term model-free VaR peak-to-trough ratio and average
percentage n-day procyclicality measure for a calendar spread and a butter�y spread portfolios.

Figure 1: Margins obtained with the FHS algorithm (blue) and the short-term model-free VaR (orange), for a
calendar spread ATM 1M-6M portfolio (left) and a butter�y spread 3M with moneyness (0.9, 1, 1.1) portfolio
(right).

6.4 Practical implementation of the neural-SDE model

In this section we consider the neural-SDE model for normalized option prices, and in particular we compare

VaR estimations obtained as empirical quantiles on simulations (see section 3.4.1) and VaR values resulting

from the approximated closed formula of theorem 5.6.

We use the same data as in section 6.3 and compute forward and discount factors similarly.

Before calibrating the G factors on the time-to-maturity, log-forward moneyness grid identi�ed in section 6.3,

historical prices must be interpolated on such a grid. With this aim, we use the same interpolation/extrap-

olation algorithm consisting in implied volatility's linear interpolation on the space dimension and total

variances' linear interpolation in the time direction.

Now, for a �xed date t, the past 5 years historical data (1260 observations) is used to calibrate the G and ξ

factors. We choose to calibrate the factors ξs for s ≤ t in the most e�cient way, only looking at the statistical

accuracy. In particular, for the �xed time-to-maturity and log-forward moneyness grid, we choose G0 as the

average historical prices and the remaining Gi as the principal components of the residuals between prices

and values of G0. See [7] for a detailed description of the calibration algorithm. The calibration code that
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we use is the one implemented in the Github repository of the cited article.5 Based on calibration accuracy

and process time, we decide to take 2 statistical accuracy factors ξs.

At this point we have the constant factors G on the �xed grid and an history of factors ξs. Furthermore,

the calibration uses neural networks to estimate the distributions of S and ξ as in eq. (3). In particular, we

have today's parameters αt, βt, µt and σt, and for any value of S and ξ, the neural network can predict the

corresponding parameters. Observe that we take the covariance matrix Pt = Id as in [7].

For future computations, the matrix G has to be interpolated outside the �xed time-to-maturity and log-

forward moneyness grid. To do so, we �rstly interpolate normalized call prices on the target couple (τ, k)

for every historical past day. The interpolation is performed as in the preparation of the initial database,

computing implied volatilities and interpolating them linearly on the space direction and linearly in total

variance on the time direction. Once all history on (τ, k) is retrieved, the G(τ, k) factors are the intercept

and the coe�cients of the linear regression of prices along the history of ξs.

At present, the two VaR calculation methodologies can be implemented. We test the same two portfolios

of section 6.3 consisting of an ATM calendar spread 1M-6M, and a butter�y spread on maturity 3M and

moneyness 0.9, 1, 1.1. We consider an MPOR of 1 day and a VaR con�dence level θ = 0.99.

For both VaR methodologies, we work under the assumption of constant risk-free rates in the MPOR horizon.

Then, the discount factor DFt+h(τ) in h days on a time-to-maturity τ is equal to today's discount factor

DFt(τ), while the forward value Ft+h(τ) in h days on a time-to-maturity τ becomes St+h

St
Ft(τ).

For the empirical VaR, simulations are performed under the hypothesis that parameters α, β, µ and σ are

constant between t and t + h, following Euler's scheme in eq. (16). Starting with the estimation of today's

parameters, values of St+h and ξt+h are simulated 10000 times. Future normalized prices are computed

using the model relation eq. (2) with the G factors evaluated on time-to-maturity τ − h and log-forward

moneyness k + log Ft(τ)
Ft+h(τ−h) , and the estimated values of ξt+h. Once the simulated normalized call prices

are computed, they are re-denormalized multiplying by DFt(τ − h) and Ft+h(τ − h). The �nal VaR is the

1− θ empirical quantile of P&Ls obtained as di�erence of simulated future prices and today price.

In the case of VaR obtained via approximated closed formula, in order to be consistent with the empirical

VaR, the distribution of St+h is taken to be a log-normal distribution, so that the used closed formula

coincides with eq. (21). Derivatives of the components of G with respect to k are computed as the average

between backward and forward �nite di�erences.

We plot the percentage ratio between the absolute di�erence between the two VaR estimations and the

portfolio value along year 2019 in �g. 2. We can see that the empirical VaR and the approximated formula

eq. (21) for the VaR generally have a very small error (about 4% for the calendar portfolio and 1% for the

butter�y portfolio), with some higher picks which could reach the 10% of the portfolio. This is due to the

fact that the approximated formula is less procyclical than the empirical one and reacts slower to market

changes. All in all, the results con�rm the consistency of hypothesis in theorem 5.6.

5https://github.com/vicaws/neuralSDE-marketmodel
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Figure 2: Percentage relative error between the empirical neural-SDE VaR calculated as in section 3.4.1 and
the approximated closed formula VaR in theorem 5.6, for a calendar spread ATM 1M-6M portfolio (left) and
a butter�y spread 3M with moneyness (0.9, 1, 1.1) portfolio (right).
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7. Conclusion

We summarize and analyze the methodologies that CCPs currently use for the initial margin of option

portfolios. In particular, we compute a quasi-explicit formula for the VaR of option portfolios in the neural-

SDE model of [7], and propose a closed asymptotic short-term model-free formula for the VaR at small time

horizons.

Based on the numerical experiments that we conduct, we are con�dent that this new short-term model-free

formula could be considered as a candidate for the core component of IM methodologies for option portfolios,

duly complemented by Short Option Minimum and Stress Historical VaR components.
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A. Proof of lemma 5.4

Let us consider the distribution of P&L√
h

given in eqs. (14) and (16). We write W0,t+h − W0,t =
√
hY and

Wt+h − Wt =
√
hX where Y is a standard Gaussian random variable and X is a d-dimensional Gaussian

random variable with correlation matrix Pt not depending on h.

We �rst consider the term A(h,St+h)√
h

and look at its limit for h going to 0. Since St+h goes to St, both the

numerator and the denominator go to 0. We then use L'Hôpital's rule to develop the limit. The derivative

of St+h with respect to h is

St+h

(
αt −

β2
t

2
+

βt

2
√
h
Y

)
so that the derivative of A(h, St+h) with respect to h is

St+h

[(
αt −

β2
t

2
+

βt

2
√
h
Y

)∑
i

πiDFt(Ti − (t+ h))f(Ti − (t+ h))

(
G0

(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))St+h

)
+

+G
(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))St+h

)
· ξt − 1Puts(i)

)
+

+
∑
i

πi
d

dh

(
DFt(Ti − (t+ h))f(Ti − (t+ h))

)(
G0

(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))St+h

)
+

+G
(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))St+h

)
· ξt − 1Puts(i)

)
+

−
∑
i

πiDFt(Ti − (t+ h))f(Ti − (t+ h))

(
∂τG0

(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))St+h

)
+

+ ∂τG
(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))St+h

)
· ξt
)
+

−
∑
i

πiDFt(Ti − (t+ h))f(Ti − (t+ h))

(
∂kG0

(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))St+h

)
+

+ ∂kG
(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))St+h

)
· ξt
)
×

×

(
−∂τf(Ti − (t+ h))

f(Ti − (t+ h))
+ αt −

β2
t

2
+

βt

2
√
h
Y

)]

where 1Puts(i) is 1 if the index i refers to a put, otherwise it is null. This quantity explodes for h going to 0

with speed γY

2
√
h
where

γ = Stβt

∑
i

πiDFt(Ti − t)f(Ti − t)×

×
[
G0

(
Ti − t, log

Ki

f(Ti − t)St

)
+G

(
Ti − t, log

Ki

f(Ti − t)St

)
· ξt − 1Puts(i)+

− ∂k

(
G0

(
Ti − t, log

Ki

f(Ti − t)St

)
+G

(
Ti − t, log

Ki

f(Ti − t)St

)
· ξt
)]

.

This means that the ratio A(h,St+h)√
h

tends to γY , where γ does not depend on h.
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We now look at the term B(h, St+h) · ξt+h−ξt√
h

. Firstly, the limit of B(h, St+h) for h going to 0 is

St

∑
i

πiDFt(Ti − t)f(Ti − t)G
(
Ti − t, log

Ki

f(Ti − t)St

)

which is simply a sum of call surfaces and, in general, is di�erent from 0. Secondly, the ratio ξt+h−ξt√
h

is equal

to µt

√
h+ σt ·X and goes to σt ·X when h tends to 0.

All in all, P&L√
h

tends to γY +B(0, St) ·σt ·X almost surely, hence in law. Then, since the cumulative density

function of the random variable γY + B(0, St) · σt · X has a continuous inverse, all the quantiles of P&L√
h

converge to the corresponding quantiles of γY +B(0, St) · σt ·X as h tends to 0.

The h-days VaR with con�dence level θ is the value of v(θ, h) solving

1− θ = P (P&L ≤ v(θ, h))

= P

(
P&L√

h
≤ v(θ, h)√

h

)
.

From the above discussion, we have v(θ, h) = u(θ)
√
h+ o(

√
h), where u(θ) = F−1

γY+B(0,St)·σt·X(1− θ).
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B. Proof of theorem 5.6

From the de�nition in eq. (16), St+h has a log-normal distribution with density

pSt+h
(s) =

1

sβt

√
2πh

exp

(
−

(
log s

St
−
(
αt − β2

t

2

)
h

βt

√
2h

)2)
.

We look at the RHS of eq. (19) when h goes to 0.

We can re-write the integral using a change of variable y =
log s

St
−
(
αt−

β2
t
2

)
h

βt

√
h

as

∫ ∞

−∞

1√
2π

exp

(
−y2

2

)
Φ

(
v(θ, h)− Â(h, s(h, y))

∥B̂(h, s(h, y))∥2

)
dy

where s(h, y) = St exp
(
yβt

√
h +

(
αt − β2

t

2

)
h
)
. Observe that the integrand is dominated by the integrable

function 1√
2π

exp
(
−y2

2

)
.

If we prove that for h going to 0 the integrand converges pointwise to a function of the form Φ
(−cty+u(θ)

qt

)
where ct and qt do not depend on y, for the Lebesgue's dominated convergence theorem the whole integral

converges to ∫ ∞

−∞

1√
2π

exp

(
−y2

2

)
Φ

(
−cty + u(θ)

qt

)
dy. (23)

Assuming the proof of the convergence is done (see appendix B.1), we can pick-up a pair of independent

standard Gaussian random variables X,Y and write the latter expression as

E

[
1

(
X ≤ −ctY + u(θ)

qt

)]
.

The random variable Z = qtX+ctY√
c2t+q2t

has a standard normal distribution, so that the latter quantity is equal

to

E

[
Φ

(
u(θ)√
c2t + q2t

)]
= Φ

(
u(θ)√
c2t + q2t

)
.

Then, we can �nally recover the expression of the initial margin VaRθ,t(h) as in eq. (21).

B.1 Proof of the pointwise convergence

The pointwise convergence of

Φ

(
v(θ, h)− Â(h, s(h, y))

∥B̂(h, s(h, y))∥2

)
to a function of the form Φ

(−cty+u(θ)
qt

)
can be proved �rstly observing that we can work under hypothesis of

continuous functions, given that normalized prices can be considered to be continuous in time-to-maturity

and log-forward moneyness. Also, since we are looking at the limit when h is small, we can use theorem 5.4

and substitute v(θ, h) with u(θ)
√
h+ o(

√
h).
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Firstly observe that the matrix bt does not depend on h, and ∥B̂(h, s(h, y))∥2 =
√
h∥B(h, s(h, y)) · σt · bt∥2

where

B(h, s(h, y)) = s(h, y)
∑
i

πiDFt(Ti − (t+ h))f(Ti − (t+ h))G
(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))s(h, y)

)
.

As shown in appendix A, the limit of B(h, s(h, y)) for h going to 0 is

St

∑
i

πiDFt(Ti − t)f(Ti − t)G
(
Ti − t, log

Ki

f(Ti − t)St

)

which is di�erent from 0. Then, the ratio u(θ)
√
h+o(

√
h)

∥B̂(h,s(h,y))∥2
goes to

u(θ)

∥B(0, St) · σt · bt∥2
=

u(θ)

qt

in 0.

We now consider the ratio Â(h,s(h,y))√
h∥B(h,s(h,y))·σt·bt∥2

. The function Â(h, s(h, y)) is in turn the sum between

A(h, s(h, y)) and B(h, s(h, y)) ·mt(s(h, y)). The latter term is equal to B(h, s(h, y)) · (µth+ yσt · PS,ξ,t

√
h),

so that its ratio with
√
h∥B(h, s(h, y)) · σt · bt∥2 goes to

B(0,St)·σt·PS,ξ,t

qt
y.

We shall now focus on the ratio A(h,s(h,y))√
h∥B(h,s(h,y))·σt·bt∥2

. Since both the numerator and denominator go to 0

with h, we use L'Hôpital's rule to develop the limit.

The derivative of B(h, s(h, y)) with respect to h is

s(h, y)

[(
yβt

2
√
h
+ αt −

β2
t

2

)∑
i

πiDFt(Ti − (t+ h))f(Ti − (t+ h))G
(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))s(h, y)

)
+

+
∑
i

πi
d

dh

(
DFt(Ti − (t+ h))f(Ti − (t+ h))

)
G
(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))s(h, y)

)
+

−
∑
i

πiDFt(Ti − (t+ h))f(Ti − (t+ h))∂τG
(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))s(h, y)

)
+

−
∑
i

πiDFt(Ti − (t+ h))f(Ti − (t+ h))∂kG
(
Ti − (t+ h), log

Ki

f(Ti − (t+ h))s(h, y)

)
×

×

(
−∂τf(Ti − (t+ h))

f(Ti − (t+ h))
+

yβt

2
√
h
+ αt −

β2
t

2

)]

and for h going to 0, it explodes with a speed of

1

2
√
h
Styβt

∑
i

πiDFt(Ti − t)f(Ti − t)
(
G
(
Ti − t, log

Ki

f(Ti − t)St

)
− ∂kG

(
Ti − t, log

Ki

f(Ti − t)St

))
.

47/50 2023-06-22



Similarly, the derivative of A(h, s(h, y)) with respect to h explodes with a speed of

1

2
√
h
Styβt

∑
i

πiDFt(Ti − t)f(Ti − t)×

×
[
G0

(
Ti − t, log

Ki

f(Ti − t)St

)
+G

(
Ti − t, log

Ki

f(Ti − t)St

)
· ξt − 1Puts(i)+

− ∂k

(
G0

(
Ti − t, log

Ki

f(Ti − t)St

)
+G

(
Ti − t, log

Ki

f(Ti − t)St

)
· ξt
)]

.

Doing the derivative of
√
h∥B(h, s(h, y)) · σt · bt∥2, we �nd

1

2
√
h
∥B(h, s(h, y)) · σt · bt∥2 +

√
h

(
d
dhB(h, s(h, y)) · σt · bt

)T ·
(
B(h, s(h, y)) · σt · bt

)
∥B(h, s(h, y)) · σt · bt∥2

,

and this explodes with the �rst term.

All in all, L'Hôpital's rule shows that the limit of Â(h,s(h,y))√
h∥B(h,s(h,y))·σt·bt∥2

for h going to 0 is ct
qt
y.
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